![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
Parallel structures are more effective than serial ones for industrial automation applications that require high precision and stiffness, or a high load capacity relative to robot weight. Although many industrial applications have adopted parallel structures for their design, few textbooks introduce the analysis of such robots in terms of dynamics and control. Filling this gap, Parallel Robots: Mechanics and Control presents a systematic approach to analyze the kinematics, dynamics, and control of parallel robots. It brings together analysis and design tools for engineers and researchers who want to design and implement parallel structures in industry. Covers Kinematics, Dynamics, and Control in One Volume The book begins with the representation of motion of robots and the kinematic analysis of parallel manipulators. Moving beyond static positioning, it then examines a systematic approach to performing Jacobian analysis. A special feature of the book is its detailed coverage of the dynamics and control of parallel manipulators. The text examines dynamic analysis using the Newton-Euler method, the principle of virtual work, and the Lagrange formulations. Finally, the book elaborates on the control of parallel robots, considering both motion and force control. It introduces various model-free and model-based controllers and develops robust and adaptive control schemes. It also addresses redundancy resolution schemes in detail. Analysis and Design Tools to Help You Create Parallel Robots In each chapter, the author revisits the same case studies to show how the techniques may be applied. The case studies include a planar cable-driven parallel robot, part of a promising new generation of parallel structures that will allow for larger workspaces. The MATLAB (R) code used for analysis and simulation is available online. Combining the analysis of kinematics and dynamics with methods of designing controllers, this text offers a holistic introduction for anyone interested in designing and implementing parallel robots.
Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selection, testing, maintenance, and operation of a myriad of high-voltage power equipment, this must-have text: Discusses power system overvoltages, electric field calculation, and statistical analysis of ionization and breakdown phenomena essential for proper planning and interpretation of high-voltage tests Considers the breakdown of gases (SF6), liquids (insulating oil), solids, and composite materials, as well as the breakdown characteristics of long air gaps Describes insulation systems currently used in high-voltage engineering, including air insulation and insulators in overhead power transmission lines, gas-insulated substation (GIS) and cables, oil-paper insulation in power transformers, paper-oil insulation in high-voltage cables, and polymer insulation in cables Examines contemporary practices in insulation coordination in association with the International Electrotechnical Commission (IEC) definition and the latest standards Explores high-voltage testing and measuring techniques, from generation of test voltages to digital measuring methods With an emphasis on handling practical situations encountered in the operation of high-voltage power equipment, High Voltage Engineering provides readers with a detailed, real-world understanding of electrical insulation systems, including the various factors affecting-and the actual means of evaluating-insulation performance and their application in the establishment of technical specifications.
This book highlights the cutting-edge research on energy management within smart grids with significant deployment of Plug-in Electric Vehicles (PEV). These vehicles not only can be a significant electrical power consumer during Grid to Vehicle (G2V) charging mode, they can also be smartly utilized as a controlled source of electrical power when they are used in Vehicle to Grid (V2G) operating mode. Electricity Price, Time of Use Tariffs, Quality of Service, Social Welfare as well as electrical parameters of the network are all different criteria considered by the researchers when developing energy management techniques for PEVs. Risk averse stochastic energy hub management, maximizing profits in ancillary service markets, power market bidding strategies for fleets of PEVs, energy management of PEVs in the presence of renewable energy in distribution lines or microgrids and loss minimization in distribution networks based on smart coordination approaches using real time energy prices are some of the attractive and novel topics explored in this book. It will be an excellent reference for graduate students, researchers and industry professionals who are interested in getting a snapshot view of today's latest research on applying various smart energy management strategies for smart grids with high penetration of PEVs.
Focusing on technical, policy and social/societal practices and innovations for electrified transport for personal, public and freight purposes, this book provides a state-of-the-art overview of developments in e-mobility in Europe and the West Coast of the USA. It serves as a learning base for further implementing and commercially developing this field for the benefit of society, the environment and public health, as well as for economic development and private industry. A fast-growing, interdisciplinary sector, electric mobility links engineering, infrastructure, environment, transport and sustainable development. But despite the relevance of the topic, few publications have ever attempted to document or promote the wide range of electric mobility initiatives and projects taking place today. Addressing this need, this publication consists of case studies, reports on technological developments and examples of successful infrastructure installation in cities, which document current initiatives and serve as an inspiration for others.
This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks.
This book on road traffic congestion in cities and suburbs describes congestion problems and shows how they can be relieved. The first part (Chapters 1 - 3) shows how congestion reflects transportation technologies and settlement patterns. The second part (Chapters 4 - 13) describes the causes, characteristics, and consequences of congestion. The third part (Chapters 14 - 23) presents various relief strategies - including supply adaptation and demand mitigation - for nonrecurring and recurring congestion. The last part (Chapter 24) gives general guidelines for congestion relief and provides a general outlook for the future. The book will be useful for a wide audience - including students, practitioners and researchers in a variety of professional endeavors: traffic engineers, transportation planners, public transport specialists, city planners, public administrators, and private enterprises that depend on transportation for their activities.
These proceedings gather outstanding papers submitted to the 2015 SAE-China Congress, the majority of which are from China, the biggest car maker as well as most dynamic car market in the world. The book covers a wide range of automotive topics, presenting the latest technical achievements in the industry. Many of the approaches presented can help technicians to solve the practical problems that most affect their daily work.
This book will cover the most recent progress on the use of low-cost nanomaterials and development of low-cost/large scale processing techniques for greener and more efficient energy related applications, including but not limited to solar cells, energy storage, fuel cells, hydrogen generation, biofuels, etc. Leading researchers will be invited to author chapters in the field with their expertise. Each chapter will provide general introduction to a specific topic, current status of research and development, research challenges and outlook for future direction of research. This book aims to benefit a broad readership, from undergraduate/graduate students to researchers working on renewable energy.
This book deals in a basic and systematic manner with the fundamentals of random function theory and looks at some aspects related to arrival, vehicle headway and operational speed processes at the same time. The work serves as a useful practical and educational tool and aims at providing stimulus and motivation to investigate issues of such a strong applicative interest. It has a clearly discursive and concise structure, in which numerical examples are given to clarify the applications of the suggested theoretical model. Some statistical characterizations are fully developed in order to illustrate the peculiarities of specific modeling approaches; finally, there is a useful bibliography for in-depth thematic analysis.
This book provides specific topics intending to contribute to an improved knowledge on Technology Evaluation and Selection in a Life Cycle Perspectives. Although each chapter will present possible approaches and solutions, there are no recipes for success. Each reader will find his/her balance in applying the different topics to his/her own specific situation. Case studies presented throughout will help in deciding what fits best to each situation, but most of all any ultimate success will come out of the interplay between the available solutions and the specific problem or opportunity the reader is faced with.
This thesis describes a new approach to the construction of solar cells. Following nature's example, this approach has the goal to find a biomimetic self-assembling dye, whose aggregates can mimic the natural light-harvesting system of special photosynthetic active bacteria. The thesis investigates methods to control the self-assembly such that suitable dye aggregates are formed with high internal order and size-confinement. The dye aggregates can be implemented into a new type of solar cells, designed to combine the advantages of hybrid solar cells and solid-state dye-sensitized solar cells (ss-DSSCs): dye aggregate solar cells (DASCs). This book describes the construction and first tests of a prototype for DASCs on the basis of the investigated dye aggregates. The described approach has the advantage that it will enable to build up a light-harvesting system fully synthetically in large scale in order to realize low-cost, light-weight and environmentally friendly solar cells - a worthwhile goal towards the exploitation of clean energy from sunlight.
This book addresses the practical issues for commercialization of current and future electric and plug-in hybrid electric vehicles (EVs/PHEVs). The volume focuses on power electronics and motor drives based solutions for both current as well as future EV/PHEV technologies. Propulsion system requirements and motor sizing for EVs is also discussed, along with practical system sizing examples. PHEV power system architectures are discussed in detail. Key EV battery technologies are explained as well as corresponding battery management issues are summarized. Advanced power electronic converter topologies for current and future charging infrastructures will also be discussed in detail. EV/PHEV interface with renewable energy is discussed in detail, with practical examples.
In 2012, over four billion people tuned in to watch the London Summer Olympics. As the single largest mega-event in the world, the Olympics has the power to captivate the global imagination. Long before athletes vie for a gold medal, however, competition between cities eager to host the Games kicks off with a rigorous bid process. The lengthy and expensive endeavor to host the Olympics is as high-stakes as any sporting event. Rather than encouraging cities to refrain from bidding, Bidding for Development takes a policy approach that challenges stakeholders to bid responsibly and strategically in pursuit of concrete outcomes. Every bid city has the potential to accelerate long-term transportation development through a strategic and robust planning process. This book concentrates on the phenomenon of repeat Olympic bids and the opportunities that may come from bidding, particularly for those cities that never win the Games. In this context, Bidding for Development explores the intersection between transportation infrastructure development, the Olympic bid process, and the resulting legacies experienced by bid losers. The findings address the central question: how can participating in the Olympic bid process accelerate transportation development regardless of the bid result? In response, this book presents a Bid Framework outlining how and when cities may use the bid to unite resources, align transportation priorities, and empower leaders to achieve urban development objectives in preparation for the Olympic bid. The Bid Framework is then applied to two case studies, Manchester and Istanbul, to examine each bid loser's effectiveness in using the bid process to catalyze transportation development. Concurrently, the book takes into consideration how the International Olympic Committee's evolving bid regulations and requirements relate to urban development and positive social legacy. Bidding for Development delivers actionable recommendations for all Olympic stakeholders to improve the value of the bid process and transportation benefits beyond the Games.
The aim of the book is to present and discuss new methods, issues and challenges involved in geoinformatics' contribution to making transportation more intelligent, efficient and human-friendly. It covers a wide range of topics related to transportation and geoinformatics. The themes are divided into four main sections: Transport modeling, Sensor data and services, Intelligent transport systems, and Transport planning and accessibility.
This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control strategies to minimize load variance, smart PEV load management based on load forecasting, integrating renewable energy sources such as photovoltaic arrays to supplement grid power, using wireless communication networks to coordinate the charging load of a smart grid and using market price of electricity and customers payment to coordinate the charging load. Hence, this book proposes many new strategies proposed recently by the researchers around the world to address the issues related to coordination of charging load of PEVs in a future smart grid.
This brief explores two of the main challenges of spatial network data analysis: the many connected components in the spatial network and the many candidates that have to be processed. Within this book, these challenges are conceptualized, well-defined problems are explored, and critical techniques are discussed.The process of summarizing spatial network data entails finding a compact description or representation of observations or activities on large spatial or spatiotemporal networks. However, summarizing spatial network data can be computationally challenging for various reasons, depending on the domain. The content has applications for professionals, organizations, and researchers in transportation safety, public safety, public health, disaster response, and related fields.
Based on the simulations developed in research groups over the past years, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines provides a compilation of the main ingredients necessary to build up a quasi-dimensional computer simulation scheme. Quasi-dimensional computer simulation of spark ignition engines is a powerful but affordable tool which obtains realistic estimations of a wide variety of variables for a simulated engine keeping insight the basic physical and chemical processes involved in the real evolution of an automotive engine. With low computational costs, it can optimize the design and operation of spark ignition engines as well as it allows to analyze cycle-to-cycle fluctuations. Including details about the structure of a complete simulation scheme, information about what kind of information can be obtained, and comparisons of the simulation results with experiments, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines offers a thorough guide of this technique. Advanced undergraduates and postgraduates as well as researchers in government and industry in all areas related to applied physics and mechanical and automotive engineering can apply these tools to simulate cyclic variability, potentially leading to new design and control alternatives for lowering emissions and expanding the actual operation limits of spark ignition engines
The book aims at empowering readers with a clear understanding of multi-stage mechanism, different microactuators' performances, their limitations to control system performance and problems encountered in control system design and techniques for solving these problems and dealing with these limitations. This book is designed for academic researchers and engineering practitioners in systems and control, especially those engaged in the area of control in mechanical systems with microactuators and multi-stage actuations. Provides specific applications of multi-stage mechanical actuation systems Discusses issues and solutions in control system design for multi-stage mechanical actuation systems Discusses various types of microactuators and their control methods in multi-stage mechanism Includes real-world examples for demonstrating underlying concepts and design techniques Explores what a multi-stage mechanical systems is, for what purpose the multi-stage system is applied, how it works and how to control it for high performance
The work demonstrates a techno-economic model of power generation for the cost-effective integration of renewable energy sources, with the goal of reducing greenhouse gas emissions in Canada. The methodological approach outlined by the author is based on periodic simulation of price variations. The result demonstrates that a 10% transition to renewable energy generation is possible, practical and affordable when supported by an effective policy framework that does not need to introduce a feed-in tariff or loan-based financial mode.
This book aims to provide a good understanding of and perspective on sustainable transport in Asia by focusing on economic, environmental, and social sustainability. It is widely acknowledged that the current situation and trends in transport are not always sustainable in Asia, due in part to the fast-growing economy and the astounding speed of urbanization as well as least-mature governance. As essential research material, the book provides strong support for policy makers and planners by comprehensively covering three groups of strategies, characterized by the words "avoid" (e.g., urban form design and control of car ownership), "shift" (e.g., establishing comprehensive transportation systems and increasing public transportation systems for both intracity and intercity travel), and "improve" (e.g., redesign of paratransit system, low-emission vehicles, intelligent transportation systems, and eco-life). These are elaborated in the book alongside consideration of the uncertainty of policy effects in the future. The book is also valuable for scholars and scientists because of the diverse methodologies presented and proposed herein. Among those are the four-step model with full feedback mechanisms, the bi-level programming model with sustainability goals, data envelopment analysis and stochastic frontier analysis approaches, structural equation models, discrete and/or continuous choice models, copula-based models, survival models, and driving risk models with short-term memory. Using data collected from more than ten Asian cities, including those in both developed and developing nations, the pathway to sustainable transport in Asia gradually becomes clear.
This volume is focused on solar-to-fuel conversion using algae and cyanobacteria for advanced generation biofuels. Production of biofuels needs to rely on cheap and renewable resources, in order to be economically viable and environmentally sustainable in the long term. Solar energy is an abundant and renewable resource, and strategies for solar-to-fuel conversion have the potential to sustain our energy demands in the long term and to be carbon-dioxide neutral. First generation biofuels are those already on the market, such as bio-ethanol from sugarcane and corn starch, biodiesel from oil seed crops. However, development of a single biofuel, as efficient as it may be, would be insufficient and could not sustain the global demand for energy. The next generation of advanced biofuels explores alternative feedstocks and technologies, finding novel solar-to-fuel solutions. Algae and cyanobacteria can convert sunlight into chemical energy through the process of photosynthesis. They represent an alternative with respect to crops for solar-to-fuel conversion that does not compete with food for arable land. This SpringerBrief focuses only on solar-to-fuel conversion for production of advanced biofuels, pointing to the importance of relying on the sun for our sustainability in the long term. It is the only current publication to discuss the problem of light-utilization inefficiency during mass cultivation of micro-algae. This review also addresses the potential of cyanobacteria for the generation of direct photosynthesis-to-fuel platforms and discusses both possibilities and constraints for future developments.
The world is witnessing a rapid growth in wind and other renewable based electricity generation due to environmental concerns associated with electricity generation from the conventional sources. Wind power behaves quite differently than conventional electric power generating units due to its intermittent and diffuse nature. System planners and operators face the variability and uncertainty of wind power availability, and therefore, encounter considerable challenges in making decisions to maintain the adequacy and security of wind integrated power systems. This volume intends to bring out the original research work of researchers from academia and industry in understanding, quantifying and managing the risks associated with the uncertainty in wind variability in order to plan and operate a modern power system integrated with a significant proportion of wind power generation with an acceptable level of reliability. Accurate modeling of wind power variability and proper incorporation of the models in reliability and risk evaluation is very important for the planning and operation of electric power systems, and will play a crucial role in defining the requirement of various types of resources and services, such as storage and ancillary services in power systems.
Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group "Underground Storage of CO2 and Energy", is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme "Clean Energy Systems in the Subsurface: Production, Storage and Conversion". This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coal Bedded Methane and Geothermal Systems Trapping Mechanisms and Multi-Barrier Sealing Systems for Long-Term CO2 Storage Coupled THMC-Processes and Numerical Modelling Rock Mechanical Behaviour Considering Cyclic Loading, Dilatancy, Damage, Self-sealing and Healing Underground Storage and Supply of Energy "Clean energy systems in the subsurface" will be invaluable to researchers, scientists and experts in both academia and industry trying to find a long lasting solution to the problems of global climate change, energy security and sustainability.
In this book the authors describe the main computer modelling techniques that, having gained universal acceptance, constitute the basic framework of modern power system analysis. Some basic knowledge of power system theory, matrix analysis and numerical techniques is presumed, although several appendices and many references have been included to help the uninitiated to pick up the relevant background. An introductory chapter describes the main computational and transmission system developments which influence modern power system analysis. This is followed by three chapters on the subject of load or power flow with emphasis on the Newton-Raphson fast-decoupled algorithm. Chapter 5 describes the subject of a.c. system faults. The next two chapters deal with the electromechanical behaviour of power systems. Chapter 6 describes the basic dynamic models of power system plant and their use in multi-machine transient stability analysis. More advanced dynamic models and a quasi-steady-state representation of large converter plant and h.v.d.c. transmission are developed in Chapter 7. A description of the Electromagnetic Transients Program with the marriage between "Bergeron's and Trapezoidal" methods is presented in Chapter 8, and a generalization of the multi-phase models described in Chapter 3 is used in Chapter 9 as the framework for harmonic flow analysis. Chapter 10 describes the state of the art in power system security and optimization analysis. Finally, Chapter 11 deals with recent advances made on the subject of interactive power system analysis and developments in computer graphics with emphasis on the use of personal computers.
This short, practical book offers advice on the safe storage, handling and transportation of liquid natural gas (LNG), liquid petroleum gas (LPG) and other cryogenic fluid mixtures. It begins with a review of the physical properties of LNG and LPG, and a brief overview of basic handling and storage methods. The chapters that follow address more in-depth topics such as heat flows in LNG and LPG storage systems, insulation techniques and surface evaporation phenomena. Two chapters are then devoted to the specific sequence of problems caused by stratification and rollover, and the techniques used to manage and alleviate these issues. The book then considers the use of vacuum insulated tanks for the storage of pressurised LNG, and the effective transfer of liquids avoiding 2-phase flow. It concludes with a summary of safe storage and handling protocols, and addresses the specific health issues encountered when dealing with cryogenic liquid mixtures. Throughout the book the author presents real-life case studies to illustrate the situation being discussed. Written in a practical style, it will prove an invaluable companion to anyone working with LNG, LPG or other cryogenic liquid mixtures. |
![]() ![]() You may like...
Preference Change - Approaches from…
Till Grune-Yanoff, Sven Ove Hansson
Hardcover
R3,032
Discovery Miles 30 320
Robust Control - Theoretical Models and…
Moises Rivas-Lopez, Wendy Flores F
Hardcover
R3,350
Discovery Miles 33 500
Fourier Transforms - High-tech…
Goran Nikolic, Dragan Cvetkovic, …
Hardcover
R3,378
Discovery Miles 33 780
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,737
Discovery Miles 27 370
|