![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
The world is witnessing a rapid growth in wind and other renewable based electricity generation due to environmental concerns associated with electricity generation from the conventional sources. Wind power behaves quite differently than conventional electric power generating units due to its intermittent and diffuse nature. System planners and operators face the variability and uncertainty of wind power availability, and therefore, encounter considerable challenges in making decisions to maintain the adequacy and security of wind integrated power systems. This volume intends to bring out the original research work of researchers from academia and industry in understanding, quantifying and managing the risks associated with the uncertainty in wind variability in order to plan and operate a modern power system integrated with a significant proportion of wind power generation with an acceptable level of reliability. Accurate modeling of wind power variability and proper incorporation of the models in reliability and risk evaluation is very important for the planning and operation of electric power systems, and will play a crucial role in defining the requirement of various types of resources and services, such as storage and ancillary services in power systems.
This book deals with complex variants of Travelling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) within the manufacturing and service industries. The objective is to develop heuristics for these supply chain problems in order to offer practical solutions to improve operational efficiency. These heuristics are evaluated using benchmark and derived data-sets. Case studies pertaining to logistics in different industries including textile machinery manufacturing and banking are also included to demonstrate the created heuristics. High competition in today's global market has forced the organizations to invest in and focus on their logistics system. The critical function of logistics is the transportation within and across various supply chain entities. Both supply and distribution procedure require effective transportation management. A small improvement in routing problems can lead to huge logistics savings in absolute terms. This book should appeal to executives, researchers and consultants seeking supply chain management solutions.
The book provides a clear, systematic and exhaustive exposition of various aspects of Generation Distribution and Utilization of Electrical Energy. The modern distribution network is spread over a large geographical area and hence the concept of distribution automation has been discussed so as to operate the system with a higher index of reliability and more economically. Various aspects of utilization viz. electric heating and welding, illumination engineering, and electrolytic processes are included. Modern trends in electric traction, viz. the role of SCADA in electric traction and automation in electric traction are discussed in great detail.
This short, practical book offers advice on the safe storage, handling and transportation of liquid natural gas (LNG), liquid petroleum gas (LPG) and other cryogenic fluid mixtures. It begins with a review of the physical properties of LNG and LPG, and a brief overview of basic handling and storage methods. The chapters that follow address more in-depth topics such as heat flows in LNG and LPG storage systems, insulation techniques and surface evaporation phenomena. Two chapters are then devoted to the specific sequence of problems caused by stratification and rollover, and the techniques used to manage and alleviate these issues. The book then considers the use of vacuum insulated tanks for the storage of pressurised LNG, and the effective transfer of liquids avoiding 2-phase flow. It concludes with a summary of safe storage and handling protocols, and addresses the specific health issues encountered when dealing with cryogenic liquid mixtures. Throughout the book the author presents real-life case studies to illustrate the situation being discussed. Written in a practical style, it will prove an invaluable companion to anyone working with LNG, LPG or other cryogenic liquid mixtures.
In this book the authors describe the main computer modelling techniques that, having gained universal acceptance, constitute the basic framework of modern power system analysis. Some basic knowledge of power system theory, matrix analysis and numerical techniques is presumed, although several appendices and many references have been included to help the uninitiated to pick up the relevant background. An introductory chapter describes the main computational and transmission system developments which influence modern power system analysis. This is followed by three chapters on the subject of load or power flow with emphasis on the Newton-Raphson fast-decoupled algorithm. Chapter 5 describes the subject of a.c. system faults. The next two chapters deal with the electromechanical behaviour of power systems. Chapter 6 describes the basic dynamic models of power system plant and their use in multi-machine transient stability analysis. More advanced dynamic models and a quasi-steady-state representation of large converter plant and h.v.d.c. transmission are developed in Chapter 7. A description of the Electromagnetic Transients Program with the marriage between "Bergeron's and Trapezoidal" methods is presented in Chapter 8, and a generalization of the multi-phase models described in Chapter 3 is used in Chapter 9 as the framework for harmonic flow analysis. Chapter 10 describes the state of the art in power system security and optimization analysis. Finally, Chapter 11 deals with recent advances made on the subject of interactive power system analysis and developments in computer graphics with emphasis on the use of personal computers.
This brief explores two of the main challenges of spatial network data analysis: the many connected components in the spatial network and the many candidates that have to be processed. Within this book, these challenges are conceptualized, well-defined problems are explored, and critical techniques are discussed.The process of summarizing spatial network data entails finding a compact description or representation of observations or activities on large spatial or spatiotemporal networks. However, summarizing spatial network data can be computationally challenging for various reasons, depending on the domain. The content has applications for professionals, organizations, and researchers in transportation safety, public safety, public health, disaster response, and related fields.
Electrical engineering students are traditionally given but brief exposure to the important topic of electrical machines and transformers. This text/reference comprises a thorough and accessible introduction to the subject and this Second Edition contains more material on small machinery and a new chapter on the "energy conversiona a approach to calculation of magnetically developed forces. A circuit model is developed for each of the basic devices and the physical basis of each model is explained. Chapters are relatively independent of one another and follow the same general plan----coverage is broad and deep enough to permit flexibility in course design.
This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.
Fuel cell technology is quite promising for conversion of chemical energy of hydrocarbon fuels into electricity without forming air pollutants. There are several types of fuel cells: polymer electrolyte fuel cell (PEFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), and alkaline fuel cell (AFC). Among these, SOFCs are the most efficient and have various advantages such as flexibility in fuel, high reliability, simple balance of plant (BOP), and a long history. Therefore, SOFC technology is attracting much attention as a power plant and is now close to marketing as a combined heat and power generation system. From the beginning of SOFC development, many perovskite oxides have been used for SOFC components; for example, LaMnO -based oxide for the cathode and 3 LaCrO for the interconnect are the most well known materials for SOFCs. The 3 current SOFCs operate at temperatures higher than 1073 K. However, lowering the operating temperature of SOFCs is an important goal for further SOFC development. Reliability, durability, and stability of the SOFCs could be greatly improved by decreasing their operating temperature. In addition, a lower operating temperature is also beneficial for shortening the startup time and decreasing energy loss from heat radiation. For this purpose, faster oxide ion conductors are required to replace the conventional Y O -stabilized ZrO 2 3 2 electrolyte. A new class of electrolytes such as LaGaO is considered to be 3 highly useful for intermediate-temperature SOFCs.
Integrated Resource Strategic Planning and Power Demand-Side Management elaborates two important methods - Integrated Resource Strategic Planning (IRSP) and Demand Side Management (DSM) - in terms of methodology modeling, case studies and lessons learned. This book introduces a prospective and realistic theory of the IRSP method and includes typical best practices of DSM for energy conservation and emission reduction in different countries. It can help energy providers and governmental decision-makers formulate policies and make plans for energy conservation and emission reduction, and can help power consumers reduce costs and participate in DSM projects. Zhaoguang Hu is the vice president and chief energy specialist at the State Grid Energy Research Institute, and the head of the Power Supply and Demand Research Laboratory in China.
During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an in-depth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation.
This book provides an understanding of the nature of short-circuit currents, current interruption theories, circuit breaker types, calculations according to ANSI/IEEE and IEC standards, theoretical and practical basis of short-circuit current sources, and the rating structure of switching devices. The book aims to explain the nature of short-circuit currents, the symmetrical components for unsymmetrical faults, and matrix methods of solutions, which are invariably used on digital computers. It includes innovations, worked examples, case studies, and solved problems.
The present book was written to address the needs of those readers interested in wind energy converters. The authors have tried to strike a balance between a short book chapter and a very detailed book for experts in the field. There were three prime reasons behind doing so: first, the field is highly interdisciplinary and requires a more accessible format for non-experts. The second reason for this more compact version is that both authors have encountered many students and technically oriented people who were searching for this type of book on wind energy. The third reason and motivation for writing this book was to provide some initial information to people who are embarking on a career in the wind industry. It is this group of people that the present book is targeted at.
Computational studies on fuel cell-related issues are increasingly common. These studies range from engineering level models of fuel cell systems and stacks to molecular level, electronic structure calculations on the behavior of membranes and catalysts, and everything in between. This volume explores this range. It is appropriate to ask what, if anything, does this work tell us that we cannot deduce intuitively? Does the emperor have any clothes? In answering this question resolutely in the affirmative, I will also take the liberty to comment a bit on what makes the effort worthwhile to both the perpetrator(s) of the computational study (hereafter I will use the blanket terms modeler and model for both engineering and chemical physics contexts) and to the rest of the world. The requirements of utility are different in the two spheres. As with any activity, there is a range of quality of work within the modeling community. So what constitutes a useful model? What are the best practices, serving both the needs of the promulgator and consumer? Some of the key com- nents are covered below. First, let me provide a word on my 'credentials' for such commentary. I have participated in, and sometimes initiated, a c- tinuous series of such efforts devoted to studies of PEMFC components and cells over the past 17 years. All that participation was from the experim- tal, qualitative side of the effort.
This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being investigated for the development of nanostructured piezoelectric energy harvesting devices, also known as nanogenerators. There is growing interest in strategies for energy harvesting that use a variety of existing and well-known materials in new morphologies or architectures. A key change of morphology to enable new functionality is the nanostructuring of a material. One area of particular interest is self-powered devices based on portable energy harvesting. The charging of personal electronic equipment and other small-scale electronic devices such as sensors is a highly demanding environment that requires innovative solutions. The output of these so-called nanogenerators is explained in terms of the requirements for self-powered applications. The authors summarise the range of production methods used for nanostructured devices, which require much lower energy inputs than those used for bulk systems, making them more environmentally friendly and also compatible with a wide range of substrate materials.
The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.
The rapid growth of the Asian urban population concentrates on a few large cities, turning them into giant megacities. Despite new theoretical insights into the benefits of megacities, the emerging Asia is facing a daunting challenge concerning the management of infrastructure and services in their megacities. The deteriorating urban mobility is the most difficult challenge with respect to the sharp increase in vehicle numbers and to inadequate and poorly managed road infrastructure. Public transport, a sustainable mode of mobility, is subjected to a vicious cycle of poor service, decreasing ridership and lower investment. Despite various policy initiatives, the situation has not improved. The scale and growth pattern of Asian megacities have distinctive features which generate a unique set of challenges and opportunities. New perspectives are needed to effectively address the transportation problems making the best use of available opportunities. This book, which is a result of an international collaborative research, addresses these challenges by providing insightful analysis and novel viewpoints.
Some vanguard companies have evolved to a higher level of decentralization originating in the enabling-and-autonomy paradigm. A new kind of deep leadership is practiced by these spirit-driven organizations. This book brings together theory and case studies to cover historical origins and developments of both types of decentralization.
Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. "Electromagnetic Vibration Energy Harvesting Devices" introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design flow." Electromagnetic Vibration Energy Harvesting Devices" targets the designer of electromagnetic vibration transducers who wishes to have a greater in-depth understanding for maximizing the output performance. "
This volume is focused on solar-to-fuel conversion using algae and cyanobacteria for advanced generation biofuels. Production of biofuels needs to rely on cheap and renewable resources, in order to be economically viable and environmentally sustainable in the long term. Solar energy is an abundant and renewable resource, and strategies for solar-to-fuel conversion have the potential to sustain our energy demands in the long term and to be carbon-dioxide neutral. First generation biofuels are those already on the market, such as bio-ethanol from sugarcane and corn starch, biodiesel from oil seed crops. However, development of a single biofuel, as efficient as it may be, would be insufficient and could not sustain the global demand for energy. The next generation of advanced biofuels explores alternative feedstocks and technologies, finding novel solar-to-fuel solutions. Algae and cyanobacteria can convert sunlight into chemical energy through the process of photosynthesis. They represent an alternative with respect to crops for solar-to-fuel conversion that does not compete with food for arable land. This SpringerBrief focuses only on solar-to-fuel conversion for production of advanced biofuels, pointing to the importance of relying on the sun for our sustainability in the long term. It is the only current publication to discuss the problem of light-utilization inefficiency during mass cultivation of micro-algae. This review also addresses the potential of cyanobacteria for the generation of direct photosynthesis-to-fuel platforms and discusses both possibilities and constraints for future developments.
Examining non-technological innovations for environmentally and socially-friendly transport, this book provides the reader with a better understanding of this often overlooked topic. It features four illustrative case studies, and presents a concise review of the core transport modes (road, rail and marine transport). Transport companies are compelled to innovate due to economic and environmental pressures, and the aim of these innovations is to improve fuel efficiency and ultimately to transform energy use in the transport sector. Whilst many of these innovations are technological, they can conversely be non-technological in nature. This book is intended for students and researchers interested in economics, environmental economics and economics of innovation. It also offers a useful resource to industry professionals interested in ecology and transport.
This volume contains articles from leading analysts and researchers on sustainable transportation, who provide critical reflections on how automobile-related climate policies have evolved up to now in Europe and around the world, in view of the widely recognized need to substantially curb global emissions of greenhouse gases in the coming decades. Authors describe the policies which have been most effective, outline their economic and social implications, present success stories while critically reviewing less successful examples, and suggest strategies to decarbonize passenger transportation on a global scale.
Rigorous treatments of issues related to congestion pricing are described in this book. It examines recent advances in areas such as mathematical and computational models for predicting traffic congestion, determining when, where, and how much to levy tolls, and analyzing the impact on transportation systems. The book follows recent schemes judged to be successful in London, Singapore, Norway, as well as a number of projects in the United States.
Nanofins Science and Technology describes the heat transfer effectiveness of polymer coolants and their fundamental interactions with carbon nanotube coatings that act as nanofins. Heat transfer at micro/nano-scales has attracted significant attention in contemporary literature. This has been primarily driven by industrial requirements where significant decrease in the size of electronic devices/chips with concomitant enhancement in the heat flux have caused challenging needs for cooling of these platforms. With quantum effects kicking in, traditional cooling techniques need to be replaced with more effective technologies. A promising technique is to enhance heat transfer by surface texturing using nanoparticle coatings or engineered nanostructures. These nanostructures are termed as nanofins because they augment heat transfer by a combination of surface area enhancement as well as liquid-solid interactions at the molecular scale. |
You may like...
Impact of Information Technology - From…
Yaacov Katz, Daniel Millin, …
Hardcover
R4,088
Discovery Miles 40 880
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R522
Discovery Miles 5 220
Upon What Does the Turtle Stand…
Aharon Aviram, Janice Richardson
Hardcover
R2,797
Discovery Miles 27 970
Information Technology in Educational…
A.J. Visscher, P. Wild, …
Hardcover
R2,766
Discovery Miles 27 660
|