![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most-if not all-of the properly classified experimental results that scientists, researchers, and students require for a theoretical and practical understanding of collision properties and their impact. An unprecedented collection and analysis of electron neutral collision properties This book follows a new user-friendly format that enables readers to easily retrieve, analyze, and apply specific atomic/molecular information as needed. In his previous work, Gaseous Electronics: Theory and Practice, the author first explored electron-neutron interactions. To clarify the complex fundamental processes involved, he cited as much experimental data on atoms and molecules as limited space would allow. Completing that task, this handy reference more fully compiles essential revised data on more than 420 atoms and molecules, arranging it into easily digestible chapters, sections, and appendices. Analysis parameters include total scattering, ionization, excitation, attachment cross sections, ionization and attachment coefficients, attachment rates, and ion drift velocity. Some recent research areas in gaseous electronics include: Environmentally efficient and protective lighting devices Plasma research for power generation and space applications Medical applications (some involving skin treatment and healing) Written entirely in SI units, the book includes hundreds of tables, figures, and specially drawn charts, with data expressed in both tabular and graphical form. Each chapter stands independently and contains references for further research.
In practice, actuators often undergo failures and various factors influence its effectiveness. Also due to the increasing complexity of large-scale systems, subsystems are often interconnected, whereas the interactions between any two subsystems are difficult to deal with. This book details a series of new methodologies of designing and analyzing adaptive backstepping control systems involving treatment on actuator failures, subsystem interactions and nonsmooth nonlinearities. Moreover, it discusses some interesting open issues in adaptive failure accommodation, decentralized adaptive control and distributed adaptive coordinated control.
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB is an ideal companion for quick reference and a perfect, concise introduction to the field.
Considered one of the most innovative research directions, computational intelligence (CI) embraces techniques that use global search optimization, machine learning, approximate reasoning, and connectionist systems to develop efficient, robust, and easy-to-use solutions amidst multiple decision variables, complex constraints, and tumultuous environments. CI techniques involve a combination of learning, adaptation, and evolution used for intelligent applications. Computational Intelligence Paradigms for Optimization Problems Using MATLAB (R)/ Simulink (R) explores the performance of CI in terms of knowledge representation, adaptability, optimality, and processing speed for different real-world optimization problems. Focusing on the practical implementation of CI techniques, this book: Discusses the role of CI paradigms in engineering applications such as unit commitment and economic load dispatch, harmonic reduction, load frequency control and automatic voltage regulation, job shop scheduling, multidepot vehicle routing, and digital image watermarking Explains the impact of CI on power systems, control systems, industrial automation, and image processing through the above-mentioned applications Shows how to apply CI algorithms to constraint-based optimization problems using MATLAB (R) m-files and Simulink (R) models Includes experimental analyses and results of test systems Computational Intelligence Paradigms for Optimization Problems Using MATLAB (R)/ Simulink (R) provides a valuable reference for industry professionals and advanced undergraduate, postgraduate, and research students.
All the key elements and tools necessary to plan and operate efficient electric utility power systems are presented in this book. The seven sections address economics, finance, and regulation; industrial power economics; load demand and management; reliability of the generation system; cost of production in the generation system; capacity planning; and transmission planning. Each section addresses power system theory and principles, and applies them to realistic utility examples. The results from solved examples are expanded to illustrate the sensitivity and direction of key parameters.
The goal of the book is to provide basic and advanced knowledge of design, analysis, and circuit implementation for electronic instrumentation and clarify how to get the best out of the analog, digital, and computer circuitry design steps. The reader will learn the physical fundamentals guiding the electrical and mechanical devices that allow for a modern automation and control system, which are widely comprised of computers, electronic instrumentation, communication loops, smart grids, and digital circuitry. It includes practical and technical data on electronic instrumentation with respect to efficiency, maximum power, and applications. Additionally, the text discusses fuzzy logic and neural networks and how they can be used in practice for electronic instrumentation of distributed generation, smart grids, and power systems.
Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area the least mean square (LMS) adaptive filter. This largely self-contained text: Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton's algorithm Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB, supplying problems, computer experiments, and more than 110 functions and script files Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.
Learn How to Implement Safety Codes and Regulations Effectively A number of electrical fatalities and injuries that occur each year can be overcome by a thorough understanding of electrical concepts. Yet due to the complexity of regulatory requirements, many safety professionals may not be fully equipped to handle the task. Electrical Safety: Systems, Sustainability, and Stewardship addresses the problem by simplifying the knowledge acquisition process, and arming safety professionals with the tools needed to successfully meet safety and efficacy goals. From power generation facility to electrical device, this text combines knowledge of industry standards, regulations, and real-world experience to provide a detailed explanation of electrical power generation, transmittal, and use. Explains the Concepts behind Electric Code The book introduces the basic sustainability and stewardship concepts inherent to reliability centered maintenance (RCM). It explains how these concepts apply to the components of an electrical system (the concepts can be used when auditing for electrical safety, training on electrical safety, and overseeing an upgrade or extension of a building's electrical system). In addition, it addresses general electrical safety, electromagnetic field shields, ohm/resistance study criteria, arc flash hazard analysis, and hazardous energy control. The authors outline OSHA requirements and the reasons for those requirements, and explain the implementation exigencies. This book: Describes power generation, transmittal, and usage Contains regulatory summaries from the OSHA electrical safety standards Presents the various types of electrical studies including arc flash, electromagnetic field, and ohm resistance investigations Discusses earthing grounds and overcurrent devices as over
Since its inception, the Tutorial Guides in Electronic Engineering series has met with great success among both instructors and students. Designed for first and second year undergraduate courses, each text provides a concise list of objectives at the beginning of each chapter, key definitions and formulas highlighted in margin notes, and references to other texts in the series. This volume introduces the subject of power electronics. Giving relatively little consideration to device physics, the author first discusses the major power electronic devices and their characteristics, then focuses on the systems aspects of power electronics and on the range and diversity of applications. Several case studies, covering topics from high-voltage DC transmission to the development of a controller for domestic appliances, help place the material into a practical context. Each chapter also includes a number of worked examples for reinforcement, which are in turn supported by copious illustrations and end-of-chapter exercises.
The H control has been one of the important robust control approaches since the 1980s. This book extends the area to nonlinear stochastic H2/H control, and studies more complex and practically useful mixed H2/H controller synthesis rather than the pure H control. Different from the commonly used convex optimization method, this book applies the Nash game approach to give necessary and sufficient conditions for the existence and uniqueness of the mixed H2/H control. Researchers will benefit from our detailed exposition of the stochastic mixed H2/H control theory, while practitioners can apply our efficient algorithms to address their practical problems.
Distributed Control Applications: Guidelines, Design Patterns, and Application Examples with the IEC 61499 discusses the IEC 61499 reference architecture for distributed and reconfigurable control and its adoption by industry. The book provides design patterns, application guidelines, and rules for designing distributed control applications based on the IEC 61499 reference model. Moreover, examples from various industrial domains and laboratory environments are introduced and explored.
Elements of Power Systems prepares students for engineering degrees, diplomas, Associate Member of the Institution of Engineers (AMIE) examinations, or corresponding examinations in electrical power systems. Complete with case studies, worked examples, and circuit schematic diagrams, this comprehensive text: Provides a solid understanding of the theoretical aspects of power system engineering Instills a practical knowledge of large-scale power system analysis techniques Covers load characteristics, tariffs, power system stability, and more Elements of Power Systems is designed as an undergraduate-level textbook, but the book also makes a handy reference for practicing power engineers.
This Newnes manual provides a practical introduction to the standard methods and techniques of assembly and wiring of electrical and electromechanical control panels and equipment. Electricians and technicians will find this a useful reference during training and a helpful memory aid at work. This is a highly illustrated guide, designed for ready use. The contents are presented in pictures and checklists. Each page has a series of 'how-to' instructions and illustrations. In this way the subject is covered in a manner which is easy to follow. Each step adds up to a comprehensive course in control panel wiring.This new edition includes extra underlying theory to help the technician plus application notes and limitations of use. Simple programmable logic controllers (PLCs) are covered, as well as new information about EMC/EMI regulations and their impact.
This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works.
Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality research offering a host of practical applications. They demonstrate ways to extend the use of algorithms to fields such as encryption communication, data mining, computer vision, and signal and image processing to name just a few. The brilliance of the work lies with how it coherently builds a theoretical understanding of the convergence behavior of subspace learning algorithms through a summary of chaotic behaviors.
Carefully separating the essential from the ornamental, Essentials of Control Techniques and Theory presents the nuts and bolts for designing a successful controller. It discusses the theory required to support the art of designing a working controller as well as the various aspects to convince a client, employer, or examiner of your expertise. A Compelling Account of the Basics of Control Theory Control solutions for practicing engineers Using the author's own Javascript On-Line Learning Interactive Environment for Simulation (Jollies), the text relies on computer-based graphical analysis methods, such as Nyquist, Nichols, root locus, and phase-plane, to illustrate how useful computer simulation can be for analyzing both linear and nonlinear systems. It explains step-by-step the design and modeling of various control systems, including discrete time systems and an inverted pendulum. Along with offering many web-based simulations, the book shows how mathematics, such as vectors, matrices, and the differential equations that govern state variables, can help us understand the concepts that underpin the controller's effects. From frequency domain analysis to time-domain state-space representation, this book covers many aspects of classical and modern control theory. It presents important methods for designing and analyzing linear systems and controllers.
Advances in mathematical methods, computer technology, and electrotechnical devices in particular continue to result in the creation of programs that are leading to increased labor productivity. Mathematical and simulation programs-and other programs that unite these two operations-provide the ability to calculate transitional, steady-state processes, stability conditions, and harmonic composition, and are often used to analyze processes in power electronic systems. Electrotechnical Systems: Calculation and Analysis with Mathematica and PSpice explores the potential of two such programs-Mathematica and ORCAD (PSpice)-as they are used for analysis in various areas. The authors discuss the formulation of problems and the steps in their solution. They focus on the analysis of transient, steady-state processes and their stability in non-stationary and nonlinear systems with DC and AC converters. All problems are solved using Mathematica, and program codes are presented. The authors use ORCAD (PSpice) to compare the results obtained by employing Mathematica and to demonstrate the peculiarities associated with its use. This book clearly and concisely illustrates represented expressions, variables, and functions and the general application of the mathematical pocket Mathematica 4.2 for the analysis of the electromagnetic processes in electrotechnical systems. It will be a valuable addition to the library of anyone working with electrotechnical systems.
Tracking is the goal of control of any object, plant, process, or vehicle. From vehicles and missiles to power plants, tracking is essential to guarantee high-quality behavior. Nonlinear Systems Tracking establishes the tracking theory, trackability theory, and tracking control synthesis for time-varying nonlinear plants and their control systems as parts of control theory. Treating general dynamical and control systems, including subclasses of input-output and state-space nonlinear systems, the book: Describes the crucial tracking control concepts that comprise effective tracking control algorithms Defines the main tracking and trackability properties involved, identifying properties both perfect and imperfect Details the corresponding conditions needed for the controlled plant to exhibit each property Discusses various algorithms for tracking control synthesis, attacking the tracking control synthesis problems themselves Depicts the effective synthesis of the tracking control, under the action of which, the plant behavior satisfies all the imposed tracking requirements resulting from its purpose With clarity and precision, Nonlinear Systems Tracking provides original coverage, presenting discovery and proofs of new tracking criteria and control algorithms. Thus, the book creates new directions for research in control theory, enabling fruitful new control engineering applications.
Event-based systems are a class of reactive systems deployed in a wide spectrum of engineering disciplines including control, communication, signal processing, and electronic instrumentation. Activities in event-based systems are triggered in response to events usually representing a significant change of the state of controlled or monitored physical variables. Event-based systems adopt a model of calls for resources only if it is necessary, and therefore, they are characterized by efficient utilization of communication bandwidth, computation capability, and energy budget. Currently, the economical use of constrained technical resources is a critical issue in various application domains because many systems become increasingly networked, wireless, and spatially distributed. Event-Based Control and Signal Processing examines the event-based paradigm in control, communication, and signal processing, with a focus on implementation in networked sensor and control systems. Featuring 23 chapters contributed by more than 60 leading researchers from around the world, this book covers: Methods of analysis and design of event-based control and signal processing Event-driven control and optimization of hybrid systems Decentralized event-triggered control Periodic event-triggered control Model-based event-triggered control and event-triggered generalized predictive control Event-based intermittent control in man and machine Event-based PID controllers Event-based state estimation Self-triggered and team-triggered control Event-triggered and time-triggered real-time architectures for embedded systems Event-based continuous-time signal acquisition and DSP Statistical event-based signal processing in distributed detection and estimation Asynchronous spike event coding technique with address event representation Event-based processing of non-stationary signals Event-based digital (FIR and IIR) filters Event-based local bandwidth estimation and signal reconstruction Event-Based Control and Signal Processing is the first extensive study on both event-based control and event-based signal processing, presenting scientific contributions at the cutting edge of modern science and engineering.
For decades biology has focused on decoding cellular processes one gene at a time, but many of the most pressing biological questions, as well as diseases such as cancer and heart disease, are related to complex systems involving the interaction of hundreds, or even thousands, of gene products and other factors. How do we begin to understand this complexity? Fundamentals of Systems Biology: From Synthetic Circuits to Whole-cell Models introduces students to methods they can use to tackle complex systems head-on, carefully walking them through studies that comprise the foundation and frontier of systems biology. The first section of the book focuses on bringing students quickly up to speed with a variety of modeling methods in the context of a synthetic biological circuit. This innovative approach builds intuition about the strengths and weaknesses of each method and becomes critical in the book's second half, where much more complicated network models are addressed including transcriptional, signaling, metabolic, and even integrated multi-network models. The approach makes the work much more accessible to novices (undergraduates, medical students, and biologists new to mathematical modeling) while still having much to offer experienced modelers--whether their interests are microbes, organs, whole organisms, diseases, synthetic biology, or just about any field that investigates living systems.
Multiple intelligent agent systems are commonly used in research requiring complex behavior. Synchronization control provides an advantage in solving the problem of multi-agent coordination. This book focuses on the use of synchronization control to coordinate the group behavior of multiple agents. The author includes numerous real-world application examples from robotics, automation, and advanced manufacturing. Giving a detailed look at cross-coupling based synchronization control, the text covers such topics as adaptive synchronization control, synchronous tracking control of parallel manipulators, and minimization of contouring errors of CNC machine tools with synchronization controls.
Petri nets are widely used in modeling, analysis, and control of discrete event systems arising from manufacturing, transportation, computer and communication networks, and web service systems. However, Petri net models for practical systems can be very large, making it difficult to apply such models to real-life problems. System Modeling and Control with Resource-Oriented Petri Nets introduces a new resource-oriented Petri net (ROPN) model that was developed by the authors. Not only does it successfully reduce model size, but it also offers improvements that facilitate effective modeling, analysis, and control of automated and reconfigurable manufacturing systems. Presenting the latest research in this novel approach, this cutting-edge volume provides proven theories and methodologies for implementing cost and time-saving improvements to contemporary manufacturing systems. It provides effective tools for deadlock avoidance-deadlock-free routing and deadlock-free scheduling. The authors supply simple and complex industrial manufacturing system examples to illustrate time-tested concepts, theories, and approaches for solving real-life application problems. Written in a clear and concise manner, the text covers applications to automated and reconfigurable manufacturing systems, automated guided vehicle (AGV) systems, semiconductor manufacturing systems, and flexible assembly systems. Explaining complex concepts in a manner that is easy to understand, the authors provide the understanding and tools needed for more effective modeling, analysis, performance evaluation, control, and scheduling of engineering processes that will lead to more flexible and efficient manufacturing systems.
The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is inverted to the AC voltage form by the inverter circuit. Packed with real-life scenarios and case studies from around the globe, Distributed Photovoltaic Grid Transformers covers the key design, operation, and maintenance aspects of transformers suitable for solar energy. Topics include islanding, voltage flicker, voltage operating range, frequency and power factor variation, and waveform distortion. Multiple homework questions are featured in each chapter. A solutions manual and downloadable content, such as illustrated examples, are available with qualifying course adoption.
Coarse-grained reconfigurable architecture (CGRA) has emerged as a solution for flexible, application-specific optimization of embedded systems. Helping you understand the issues involved in designing and constructing embedded systems, Design of Low-Power Coarse-Grained Reconfigurable Architectures offers new frameworks for optimizing the architecture of components in embedded systems in order to decrease area and save power. Real application benchmarks and gate-level simulations substantiate these frameworks. The first half of the book explains how to reduce power in the configuration cache. The authors present a low-power reconfiguration technique based on reusable context pipelining that merges the concept of context reuse into context pipelining. They also propose dynamic context compression capable of supporting required bits of the context words set to enable and the redundant bits set to disable. In addition, they discuss dynamic context management for reducing power consumption in the configuration cache by controlling a read/write operation of the redundant context words. Focusing on the design of a cost-effective processing element array to reduce area and power consumption, the second half of the text presents a cost-effective array fabric that uniquely rearranges processing elements and their interconnection designs. The book also describes hierarchical reconfigurable computing arrays consisting of two reconfigurable computing blocks with two types of communication structure. The two computing blocks share critical resources, offering an efficient communication interface between them and reducing the overall area. The final chapter takes an integrated approach to optimization that draws on the design schemes presented in earlier chapters. Using a case study, the authors demonstrate the synergy effect of combining multiple design schemes.
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control. |
![]() ![]() You may like...
CFD Techniques and Energy Applications
Zied Driss, Brahim Necib, …
Hardcover
R2,879
Discovery Miles 28 790
The Mechanics of Inhaled Pharmaceutical…
Warren H. Finlay
Paperback
Understanding Viscoelasticity - An…
Nhan Phan-Thien, Nam Mai-Duy
Hardcover
R3,298
Discovery Miles 32 980
Heat Transfer of Laminar Mixed…
Deyi Shang, Liang-Cai Zhong
Hardcover
Experimental and Theoretical Advances in…
Jaime Klapp, Anne Cros, …
Hardcover
R5,679
Discovery Miles 56 790
Free-Surface Flow - Environmental Fluid…
Nikolaos D. Katopodes
Paperback
Homogeneous Turbulence Dynamics
Pierre Sagaut, Claude Cambon
Hardcover
R12,210
Discovery Miles 122 100
|