![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
Mobile and wireless communications are moving towards a new era that will be characterized by the seamless collaboration of heterogeneous systems, the need for high speed communications while on the move and for advanced services with quality guarantees. Recent market research studies show that most of the traffic in the future wireless networks will be produced by mobile multimedia services which are expected to proliferate by the year 2010. On the other hand mobile and wireless communications technology is becoming more and more important in developing countries where people demand fast deployment and low cost for broadband wireless internet services. The objective of this volume is to gather research and development on topics shaping the fourth generation (4G) in mobile and wireless communications and reveal the key trends and enabling technologies for 4G. We envisage 4G wireless communication systems as IP based solution providing integrated services (voice, data, multimedia) regardless of time and end-users? location. 4G technologies will manifest the benefits of the wireless and wired technologies convergence, through enabling a wide range of innovative (both indoor and outdoor) applications. 4G applications will feature premium quality, high security and an affordable cost. The vision, though fantastic, is associated with a host of technical and technological challenges. A great deal of the latter are discussed in the articles of this volume, which aims at providing insights on the research issues and solutions that are directly associated with leading edge 4G technologies and services. Taking into account recent developments in the world of wireless communications we have given emphasis to cover all these technologies and aspects that are considered as cornerstones for achieving the goals set for 4G and that will further boost research and development of next-generation mobile communications. Contents Preface, Acknowledgement, Editorial * Editorial * Section 1 ? Overview * Dynamic Channel Allocation in IEEE 802.11 * An Overview of Peak-to-Average Power Ratio Reduction Techniques for OFDM Systems * Mobile Ad Hoc Networks: Challenges and Solutions for Providing Quality of Service Assurances * Adaptive Cell Sizing Scheme for Asymmetric Traffic Accommodation in CDMA/FDD Cellular Packet Systems * A Dynamically Self-organized Clustering Protocol for Mobile Ad Hoc Networks * Opportunistic Scheduling in Wireless Networks: A Feedback Load Perspective * OPTIMIZING AGGREGATE THROUGHPUT OF UPSTREAM TCP FLOWS OVER IEEE 802.11 WIRELESS LANS * Cooperative Communication for Energy Efficient Wireless Sensor Networks * Cross-Layer Optimization with Guaranteed QoS for Wireless Multiuser OFDM System * Handover Handling Issues in DVB-H Systems * Channel Modelling, MIMO and OFMD, (Section 2 ? Overview) * Adaptive OFDMA Systems * Bounds and Algorithms for Data-Aided Channel Estimation in OFDM * Distributed Space-Time Block Coding for Large Set of Relay Terminals * A Comparison Between Parametric and Nonparametric Channel Estimation for Multipath Fading Channels * Envelope Correlation Analysis of MRC Signals in Correlated Rician Fading * Experimental Investigation of Channel Estimation for IEEE802.11b WLAN System * Hybrid -ARQ Techniques and its Application in 4G Wireless Systems * Multiuser Diversity in MIMO Systems: Theory and Performance * On MIMO Channel Characterization for Future Wireless Communication Systems * Modelling and Analysis of Capacity-Optimal Indoor MIMO Line-Of-Sight Wireless Channels * Design of Compact Antenna Arrays for MIMO Wireless Communications * Space-Time Error Correcting Codes and Iterative Decoding * Performance Evaluation of MIMO Multiuser Opportunistic Schemes under QoS Requirements * Applications Services and Business Models (Section 3- Overview) * Metric Multidimensional Scaling for Localization and Tracking * Localization in Ad Hoc Networks for Mobile Ubiquitous Service Provisioning * Human body detection using UWB-IR indoor channel * An Overview of Wireless MAC Protocols for Vehicular Communications? * WiMedia UWB - Concept, Design and Implications * Signalling Model of Service Discovery in Heterogeneous Personal Networks * A Business Model for QoS Assessment in Mobile Wireless Networks
This book deals with the narratives of water to watt, which includes elementary conceptual design, modern planning, scheduling and monitoring systems, and extensive pre- and post-investigations pertaining to hydropower facilities. It also includes explorations to ensure aspects of dam safety evaluation, effective contract management, specialized construction management techniques, and preferred material and equipment handling systems. Special emphasis is placed upon health, safety, environmental, and risk management concepts. The book discusses a standard QA/QC system to measure and assure quality and an environmental impact assessment to reach the set target in the stipulated timeline within the approved budget. Key Features: Offers comprehensive coverage of hydro-structures and practical coverage from an industry perspective Helps readers understand complexity involved in large-scale interdisciplinary projects Provides good insights on building procedures, precautions, and project management Includes project planning, construction management and hydropower technology, QA/QC, HSE, and statutory requirements Illustrates how to integrate good constructability/buildability into good design for the best monetary value
Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors' recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors' recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.
The objective of this book is to provide a collection of solved problems on control systems, with an emphasis on practical problems. System functionality is described, the modeling process is explained, the problem solution is introduced, and the derived results are discussed. Each chapter ends with a discussion on applying MATLAB (R), LabVIEW, and/or Comprehensive Control to the previously introduced concepts. The aim of the book is to help an average reader understand the concepts of control systems through problems and applications. The solutions are based directly on math formulas given in extensive tables throughout the text.
The presence of high voltage power lines has provoked widespread concern for many years. "High Voltage Electricity Installations" presents an in-depth study of policy surrounding the planning of high voltage installations, discussing the manner in which they are percieved by the public, and the associated environmental issues. An analysis of these concerns, along with the geographical, environmental and political influences that shape their expression, is presented. Investigates local planning policy in an area of the energy sector that is of highly topical environmental and public concern Covers the planning of high-voltage installations, and formulation of local authority policies on high-voltage installations across England and Wales Features a number of case studies from both rural and urban areas, along with detailed analysis of these case studies "High Voltage Electricity Installations" will be of interest to postgraduate students, academics and practitioners alike, in the fields of environmental science, environmental planning, environmental policy-making and developments in the energy sector. It will also appeal to electricity industry practitioners responsible for the planning of high voltage installations.
Due to its high impact on the cost of electricity and its direct
correlation with customer satisfaction, distribution reliability
continues to be one of the most important topics in the electric
power industry. Continuing in the unique tradition of the
bestselling first edition, Electric Power Distribution Reliability,
Second Edition consolidates all pertinent topics on electric power
distribution into one comprehensive volume balancing theory,
practical knowledge, and real world applications. Updated and expanded with new information on benchmarking, system hardening, underground conversion, and aging infrastructure, this timely reference enables you to- - Manage aging infrastructure - Harden electric power distribution systems - Avoid common benchmarking pitfalls - Apply effective risk management The electric power industry will continue to make distribution system reliability and customer-level reliability a top priority. Presenting a wealth of useful knowledge, Electric Power Distribution Reliability, Second Edition remains the only book that is completely dedicated to this important topic.
In many developing countries the exponentially growing electricity demand can be covered by using locally available, sustainable low-enthalpy geothermal resources (80-150 DegreesC). Such low-enthalpy sources can make electricity generation more independent from oil imports or from the over-dependence on hydropower. Until now this huge energy resource has only been used by some developed countries like the USA, Iceland and New Zealand. The reason why low-enthalpy geothermal resources are not used for electricity generation is that there is still a misconception that low-enthalpy thermal fluids are fit only for direct application. The advancement of drilling technology, development of efficient heat exchangers and deployment of high sensitive binary fluids contribute to the useful application of this energy resource on a much wider scale. This book focuses on all aspects of low enthalpy geothermal thermal fluids. It will be an important source book for all scientists working on geothermal energy development. Specifically those involved in research in developing countries rich in such thermal resources, and for agencies involved in bilateral and international cooperation.
The book describes a fundamentally new approach to software dependability, considering a software system as an ever-changing system due to changes in service objectives, users' requirements, standards and regulations, and to advances in technology. Such a system is viewed as an Open System since its functions, structures, and boundaries are constantly changing. Thus, the approach to dependability is called Open Systems Dependability. The DEOS technology realizes Open Systems Dependability. It puts more emphasis on stakeholders' agreement and accountability achievement for business/service continuity than in elemental technologies.
This new edition covers a wide area from transients in power systems-including the basic theory, analytical calculations, EMTP simulations, computations by numerical electromagnetic analysis methods, and field test results-to electromagnetic disturbances in the field on EMC and control engineering. Not only does it show how a transient on a single-phase line can be explained from a physical viewpoint, but it then explains how it can be solved analytically by an electric circuit theory. Approximate formulas, which can be calculated by a pocket calculator, are presented so that a transient can be analytically evaluated by a simple hand calculation. Since a real power line is three-phase, this book includes a theory that deals with a multi-phase line for practical application. In addition, methods for tackling a real transient in a power system are introduced. This new edition contains three completely revised and updated chapters, as well as two new chapters on grounding and numerical methods.
The smart grid initiative, integrating advanced sensing technologies, intelligent control methods, and bi-directional communications into the contemporary electricity grid, offers excellent opportunities for energy efficiency improvements and better integration of distributed generation, coexisting with centralized generation units within an active network. A large share of the installed capacity for recent renewable energy sources already comprises insular electricity grids, since the latter are preferable due to their high potential for renewables. However, the increasing share of renewables in the power generation mix of insular power systems presents a significant challenge to efficient management of the insular distribution networks, mainly due to the variability and uncertainty of renewable generation. More than other electricity grids, insular electricity grids require the incorporation of sustainable resources and the maximization of the integration of local resources, as well as specific solutions to cope with the inherent characteristics of renewable generation. Insular power systems need a new generation of methodologies and tools to face the new paradigm of large-scale renewable integration. Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids discusses the modeling, simulation, and optimization of insular power systems to address the effects of large-scale integration of renewables and demand-side management. This practical book: Describes insular power systems, renewable energies, uncertainty, variability, reserves, and demand response Examines state-of-the-art forecasting techniques, power flow calculations, and scheduling models Covers probabilistic and stochastic approaches, scenario generation, and short-term operation Includes comprehensive testing and validation of the mathematical models using real-world data Explores electric price signals, competitive operation of distribution networks, and network expansion planning Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids provides a valuable resource for the design of efficient methodologies, tools, and solutions for the development of a truly sustainable and smart grid.
The development of renewable sources for electrical energy has become a mainstream focus in the field of electrical engineering. This book can be used by both engineers and researchers working to develop new electrical systems and investigate existing ones. Additionally, it can serve as a guide for undergraduate and graduate students during their study of electrical fields. The electrical devices that are used in renewable sources have complicated inner structures, and methods of computer simulation make the development of these systems easier and faster. Simulink, and its toolbox SimPowerSystems, is the most popular means for simulation of electrical systems. The topic of wind-generator (WG) systems simulation merits detailed consideration; therefore, this text covers an in-depth exploration of the simulation of WG systems, systems with batteries, photovoltaic systems, fuel elements, microturbines, and hydroelectric systems.
The third edition of Induction Machines Handbook comprises two volumes, Induction Machines Handbook: Steady State Modeling and Performance and Induction Machines Handbook: Transients, Control Principles, Design and Testing. The promise of renewable (hydro and wind) energy via cage-rotor and doubly fed variable speed generators e-transport propulsion, i-home appliances makes this third edition state of the art tool, conceived with numerous case studies, timely for both Academia and Industry. The first volume offers a thorough treatment of steady state modeling and performance of induction machines, the most used electric motors (generators) in rather constant or variable speed drives for even lower energy consumption and higher productivity in basically all industries, from home appliances, through robotics to e-transport and wind energy conversion. The second volume presents a practical up to date treatment of intricate issues with induction machine (IM) required for design and testing both in rather constant and variable speed (with power electronics) drives. It contains ready to use in industrial design and testing knowledge with numerous case studies to facilitate thorough assimilation of new knowledge.
Thermal Power Plants: Modeling, Control, and Efficiency Improvement explains how to solve highly complex industry problems regarding identification, control, and optimization through integrating conventional technologies, such as modern control technology, computational intelligence-based multiobjective identification and optimization, distributed computing, and cloud computing with computational fluid dynamics (CFD) technology. Introducing innovative methods utilized in industrial applications, explored in scientific research, and taught at leading academic universities, this book: Discusses thermal power plant processes and process modeling, energy conservation, performance audits, efficiency improvement modeling, and efficiency optimization supported by high-performance computing integrated with cloud computing Shows how to simulate fossil fuel power plant real-time processes, including boiler, turbine, and generator systems Provides downloadable source codes for use in CORBA C++, MATLAB (R), Simulink (R), VisSim, Comsol, ANSYS, and ANSYS Fluent modeling software Although the projects in the text focus on industry automation in electrical power engineering, the methods can be applied in other industries, such as concrete and steel production for real-time process identification, control, and optimization.
First published in 2004. Featuring the latest information on the new technology involved in on-site power generation, this book incorporates an overview and further detailed investigations into the issues inherent in the development, use and future of microturbines.
New methods for automation and intelligent systems applications,
new trends in telecommunications, and a recent focus on renewable
energy are reshaping the educational landscape of today's power
engineer. Providing a modern and practical vehicle to help students
navigate this dynamic terrain, Electric Power Distribution,
Automation, Protection, and Control infuses new directions in
computation, automation, and control into classical topics in
electric power distribution.
The 2017 2nd International Conference on Electromechanical Control Technology and Transportation (ICECTT 2017) was held on January 14-15, 2017 in Zhuhai, China. ICECTT 2017 brought together academics and industrial experts in the field of electromechanical control technology and transportation to a common forum. The primary goal of the conference was to promote research and developmental activities in electromechanical control technology and transportation. Another goal was to promote exchange of scientific information between researchers, developers, engineers, students, and practitioners working all around the world. The conference will be held every year thus making it an ideal platform for people to share views and experiences in electromechanical control technology and transportation and related areas.
Engineering technology development and implementation play an important role in making the industry more sustainable in an increasingly competitive world. This book covers significant recent developments in both fundamental and applied research in the engineering field. Domains of application include, but are not limited to, Intelligent Control Systems and Optimization, Signal Processing, Sensors, Systems Modeling and Control, Robotics and Automation, Industrial and Electric Engineering, Production and Management. This book is an excellent reference work to get up to date with the latest research and developments in the fields of Automation, Mechatronics and Industrial Engineering. It aims to provide a platform for researchers and professionals in all relevant fields to gain new ideas and establish great achievements in scientific development.
Electrical Engineering / Power Understanding Power Quality Problems Voltage Sags and Interruptions Power quality problems have become an increasing concern over the last decade, but surprisingly few analytical techniques have been developed to overcome these disturbances in system-equipment interactions. Now in this comprehensive book, power engineers and students can find the theoretical background necessary for understanding how to analyze, predict, and mitigate the two most severe disturbances: voltage sags and interruptions. This is the first book to offer an in-depth analysis of voltage sags and interruptions, and to show how to apply mathematical techniques for practical solutions to these disturbances. From Understanding Power Quality Problems you will gain important insights into:
This book examines the nature of emergence in context of man-made (i.e. engineered) systems, in general, and system of systems engineering applications, specifically. It investigates emergence to interrogate or explore the domain space from a modeling and simulation perspective to facilitate understanding, detection, classification, prediction, control, and visualization of the phenomenon. Written by leading international experts, the text is the first to address emergence from an engineering perspective. "System engineering has a long and proud tradition of establishing the integrative view of systems. The field, however, has not always embraced and assimilated well the lessons and implications from research on complex adaptive systems. As the editors' note, there have been no texts on Engineering Emergence: Principles and Applications. It is therefore especially useful to have this new, edited book that pulls together so many of the key elements, ranging from the theoretical to the practical, and tapping into advances in methods, tools, and ways to study system complexity. Drs. Rainey and Jamshidi are to be congratulated both for their vision of the book and their success in recruiting contributors with so much to say. Most notable, however, is that this is a book with engineering at its core. It uses modeling and simulation as the language in which to express principles and insights in ways that include tight thinking and rigor despite dealing with notably untidy and often surprising phenomena." - Paul K. Davis, RAND and Frederick S. Pardee RAND Graduate School The first chapter is an introduction and overview to the text. The book provides 12 chapters that have a theoretical foundation for this subject. Includes 7 specific example chapters of how various modeling and simulation paradigms/techniques can be used to investigate emergence in an engineering context to facilitate understanding, detection, classification, prediction, control and visualization of emergent behavior. The final chapter offers lessons learned and the proposed way-ahead for this discipline.
Networked Control Systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators and controllers is realized by a shared (wired or wireless) communication network. NCSs offer several advantages, such as reduced installation and maintenance costs, as well as greater flexibility, over conventional control systems in which parts of control loops exchange information via dedicated point-to-point connections. The principal goal of this book is to present a coherent and versatile framework applicable to various settings investigated by the authors over the last several years. This framework is applicable to nonlinear time-varying dynamic plants and controllers with delayed dynamics; a large class of static, dynamic, probabilistic and priority-oriented scheduling protocols; delayed, noisy, lossy and intermittent information exchange; decentralized control problems of heterogeneous agents with time-varying directed (not necessarily balanced) communication topologies; state- and output-feedback; off-line and on-line intermittent feedback; optimal intermittent feedback through Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL); and control systems with exogenous disturbances and modeling uncertainties.
This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control strategies to minimize load variance, smart PEV load management based on load forecasting, integrating renewable energy sources such as photovoltaic arrays to supplement grid power, using wireless communication networks to coordinate the charging load of a smart grid and using market price of electricity and customers payment to coordinate the charging load. Hence, this book proposes many new strategies proposed recently by the researchers around the world to address the issues related to coordination of charging load of PEVs in a future smart grid.
Implementing the automation of electric distribution networks, from simple remote control to the application of software-based decision tools, requires many considerations, such as assessing costs, selecting the control infrastructure type and automation level, deciding on the ambition level, and justifying the solution through a business case. Control and Automation of Electric Power Distribution Systems addresses all of these issues to aid you in resolving automation problems and improving the management of your distribution network. Bringing together automation concepts as they apply to utility distribution systems, this volume presents the theoretical and practical details of a control and automation solution for the entire distribution system of substations and feeders. The fundamentals of this solution include depth of control, boundaries of control responsibility, stages of automation, automation intensity levels, and automated device preparedness. To meet specific performance goals, the authors discuss distribution planning, performance calculations, and protection to facilitate the selection of the primary device, associated secondary control, and fault indicators. The book also provides two case studies that illustrate the business case for distribution automation (DA) and methods for calculating benefits, including the assessment of crew time savings. As utilities strive for better economies, DA, along with other tools described in this volume, help to achieve improved management of the distribution network. Using Control and Automation of Electric Power Distribution Systems, you can embark on the automation solution best suited for your needs.
Heat Conversion Systems develops the underlying concepts of advanced Rankine-based absorption and compression cycles and introduces the Building Block Approach as a general concept. The Building Block Approach identifies all cycle configurations for a given application to ensure that system designers have available all important alternatives. The book features numerous examples of advanced cycles and includes single- and multi-stage absorption heat pumps and heat transformers and combined systems. The book also discusses single- and multi-stage vapor compression systems with multiple solution circuits, multiple compressors, and cascades. Aspects of working fluid selection and their influence on cycle options, performance evaluation, and estimating procedures for the Coefficient of Performance (COP) are addressed. Cycle analysis based on the Second Laws of Thermodynamics is examined. Heat Conversion Systems will be an important source for engineers in air-conditioning, heat pumping, refrigeration, and waste heat utilization. It can be used as text in courses on thermodynamics, efficient use of energy, and environmental protection.
This book provides an extended overview and fundamental knowledge in industrial automation, while building the necessary knowledge level for further specialization in advanced concepts of industrial automation. It covers a number of central concepts of industrial automation, such as basic automation elements, hardware components for automation and process control, the latch principle, industrial automation synthesis, logical design for automation, electropneumatic automation, industrial networks, basic programming in PLC, and PID in the industry.
This book reports on the 12th International Workshop on Railway Noise held on 12-16 September 2016 at Terrigal, Australia. It gathers peer-reviewed papers describing the latest developments in rail noise and vibration, as well as state-of-the-art reviews by distinguished experts in the field. The papers cover a broad range of rail noise topics including wheel squeal, policy, regulation and perception, wheel and rail noise, predictions, measurements and monitoring, interior noise, rail roughness, corrugation and grinding, high speed rail and aerodynamic noise, and structure-borne noise, ground-borne vibration and resilient track forms. It offers an essential reference-guide to both scientists and engineers in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems. |
You may like...
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Model Predictive Control for Microgrids…
Jiefeng Hu, Josep Guerrero, …
Hardcover
Industrial Demand Response - Methods…
Hassan Haes Alhelou, Antonio Moreno Munoz, …
Hardcover
Mechanical Design of Piezoelectric…
Qing-Song Xu, Lap Mou Tam
Paperback
R3,013
Discovery Miles 30 130
|