![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
This book presents a series of innovative technologies and research results on adaptive control of dynamic systems with quantization, uncertainty, and nonlinearity, including the theoretical success and practical development such as the approaches for stability analysis, the compensation of quantization, the treatment of subsystem interactions, and the improvement of system tracking and transient performance. Novel solutions by adopting backstepping design tools to a number of hotspots and challenging problems in the area of adaptive control are provided. In the first three chapters, the general design procedures and stability analysis of backstepping controllers and the basic descriptions and properties of quantizers are introduced as preliminary knowledge for this book. In the remainder of this book, adaptive control schemes are introduced to compensate for the effects of input quantization, state quantization, both input and state/output quantization for uncertain nonlinear systems and are applied to helicopter systems and DC Microgrid. Discussion remarks are provided in each chapter highlighting new approaches and contributions to emphasize the novelty of the presented design and analysis methods. Simulation results are also given in each chapter to show the effectiveness of these methods. This book is helpful to learn and understand the fundamental backstepping schemes for state feedback control and output feedback control. It can be used as a reference book or a textbook on adaptive quantized control for students with some background in feedback control systems. Researchers, graduate students, and engineers in the fields of control, information, and communication, electrical engineering, mechanical engineering, computer science, and others will benefit from this book.
The field of electrochemistry is exploring beyond its basic principles to innovation. New Technologies for Electrochemical Applications presents advancements in electrochemical processes, materials, and technology for electrochemical power sources such as batteries, supercapacitors, fuel cells, hydrogen storage and solar cells. It also examines various environmental applications such as photo electrochemistry, photosynthesis, and coating. Organized to give readers an overview of the current field in electrochemical applications, this book features a historical timeline of advancements and chapters devoted to the topics of organic material and conducting polymers for electrochemical purposes. Established experts in the field detail state-of-the-art materials in biosensors, immunosensors, and electrochemical DNA. This edited reference is a valuable resource for graduate and post-graduate students, and researchers in disciplines such as chemistry, physics, electrical engineering and materials science.
An electric machine is a device that converts mechanical energy into electrical energy or vice versa. It can take the form of an electric generator, electric motor, or transformer. Electric generators produce virtually all electric power we use all over the world. Electric machine blends the three major areas of electrical engineering: power, control and power electronics. This book presents the relation of power quantities for the machine as the current, voltage power flow, power losses, and efficiency. This book will provide a good understanding of the behavior and its drive, beginning with the study of salient features of electrical dc and ac machines.
The second of three volumes; this book covers both the City & Guilds and SCOTVEC courses for Electrical Installation work which leads to the award of approved electrician. This new edition has been completely re-written to accommodate the 16th Edition of the Wiring Regulations and also covers the recent legislation on electrical safety at work. It is aimed at second year students on City & Guilds and SCOTVEC electrical maintenance courses. The book will should prove to be very useful for anyone involved in industrial electrical maintenance. An ELBS/LPBB edition is available.
There are many books on advanced control for specialists, but not many present these topics for non-specialists. Assuming only a basic knowledge of automatic control and signals and systems, this second edition of Optimal and Robust Control offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. The book deals with advanced automatic control techniques, paying particular attention to robustness-the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequality (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered in the book include, LQR and H approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Positive-real systems, bounded-real systems, and imaginary-negative systems Criteria for stability control Time-delay systems This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB (R) exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study of for a one-semester course in robust control. This fully renewed second edition of the book also includes new fundamental topics such as Lyapunov functions for stability, variational calculus, formulation in terms of optimization problems of matrix algebraic equations, negative-imaginary systems, and time-delay systems.
provides a detailed background to start working and doing research on mean-field-type control and game theory includes several numerical examples using a MatLab-based user-friendly toolbox provides analyzsis of mean-field-type control and game problems incorporating several stochastic processes, e.g., Brownian motions, Poisson jumps, and random coefficients includes several engineering applications in both continuous and discrete time, such as micro-grid energy storage, stirred tank reactor, mechanism design for evolutionary dynamics, multi-level building evacuation problem, and the COVID-19 propagation control
This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.
This book provides an overview of distributed control and distributed optimization theory, followed by specific details on industrial applications to smart grid systems. It discusses the fundamental analysis and design schemes for developing actual working smart grids and covers all aspects concerning the conventional and nonconventional methods of their use. Hybrid Intelligence for Smart Grid Systems provides an overview of a smart grid, along with its needs, benefits, challenges, and existing structure and describes the inverter topologies adopted for integrating renewable power, and provides an overview of its needs, benefits, challenges, and possible future technologies. This pioneering book is a must-read for researchers, engineering professionals, and students, giving them the tools needed to move from the concept of a smart grid to its actual design and implementation. Moreover, it will enable regulators, policymakers, and energy executives to understand the future of energy delivery systems towards safe, economical, high-quality power delivery in a dynamic and demanding environment.
Provides knowledge on decision making for newly evolving microgrids Discusses techniques on how to improve the quality of power networks by reducing load shedding, power imbalances, and differences between supply and demand during peak hours Offers a collection of knowledge on new techniques for microgrid design Presents emerging fields that now play an important role in microgrid design such as, data science, machine learning, AI, and IT The first book to cover the new trend in the power infrastructure and include areas such as computer science, electrical engineering, electronics engineering and energy engineering
The Earth has limited resources while the resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial bodies and their resources. This book investigates Outer Solar Systems and their prospective energy and material resources. It presents past missions and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great resource of condensed information for specialists interested in current and impending Outer Solar Systems related activities and a good starting point for space researchers, inventors, technologists and potential investors.
Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used. The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics. This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
The purpose of this book is to develop capacity building in strategic and non-strategic machine tool technology. The book contains chapters on how to functionally reverse engineer strategic and non-strategic computer numerical control machinery. Numerous engineering areas, such as mechanical engineering, electrical engineering, control engineering, and computer hardware and software engineering, are covered. The book offers guidelines and covers design for machine tools, prototyping, augmented reality for machine tools, modern communication strategies, and enterprises of functional reverse engineering, along with case studies. Features Presents capacity building in machine tool development Discusses engineering design for machine tools Covers prototyping of strategic and non-strategic machine tools Illustrates augmented reality for machine tools Includes Internet of Things (IoT) for machine tools
As engineering systems become more and more complex, industry has recognized the importance of system and product reliability and places ever increasing emphasis on it during the design phase. Despite its efforts, however, industry continues to lose billions of dollars each year because of unexpected system failures. Therefore, it becomes increasingly important for designers and engineers to have a solid grounding in reliability engineering and keep abreast of new developments and research results.
Covers up to date, corrected, "clean" presentation of the elements of flight dynamics Presents blend of theory, practice and application with real-life practical examples Provides a unique viewpoint of the applied aerodynamicist and aircraft designer Introduces bifurcation and continuation methods as a tool for flight dynamics analysis Includes a computational tool and real-life example carried through the chapters
This book presents up-to-date research developments and novel methodologies regarding recursive filtering for 2-D shift-varying systems with various communication constraints. It investigates recursive filter/estimator design and performance analysis by a combination of intensive stochastic analysis, recursive Riccati-like equations, variance-constrained approach, and mathematical induction. Each chapter considers dynamics of the system, subtle design of filter gains, and effects of the communication constraints on filtering performance. Effectiveness of the derived theories and applicability of the developed filtering strategies are illustrated via simulation examples and practical insight. Features:- Covers recent advances of recursive filtering for 2-D shift-varying systems subjected to communication constraints from the engineering perspective. Includes the recursive filter design, resilience operation and performance analysis for the considered 2-D shift-varying systems. Captures the essence of the design for 2-D recursive filters. Develops a series of latest results about the robust Kalman filtering and protocol-based filtering. Analyzes recursive filter design and filtering performance for the considered systems. This book aims at graduate students and researchers in mechanical engineering, industrial engineering, communications networks, applied mathematics, robotics and control systems.
Discusses construction and working of sensors including ultrasonic sensor, temperature sensor and optical sensor. Covers construction, working, programming and interfacing of IO devices. Discusses programming, interfacing construction, and working of relay with Arduino board for controlling high voltage devices. Covers interfacing diagram of devices with Arduino board. Provides videos demonstrating implementation of programs on Arduino board.
This book provides a reference to analysis techniques of common cooling water system problems and a historical perspective on solutions to chronic cooling water system problems, such as corrosion and biofouling. It covers best design practices for cooling water systems that are required to support the operation of all electric power plants. Plant engineers will gain better understanding of the practical issues associated with their cooling water systems and new designs or modifications of their systems should consider the actual challenges to the systems. The book is intended for graduate students and practicing engineers working in both nuclear and fossil power plants and industrial facilities that use large amounts of cooling water.
This book introduces unmanned aircraft systems traffic management (UTM) and how this new paradigm in traffic management integrates unmanned aircraft operations into national airspace systems. Exploring how UTM is expected to operate, including possible architectures for UTM implementations, and UTM services, including flight planning, strategic coordination, and conformance monitoring, Unmanned Aircraft Systems Traffic Management: UTM considers the boundaries of UTM and how it is expected to interlace with tactical coordination systems to maintain airspace safety. The book also presents the work of the global ecosystem of players advancing UTM, including relevant standards development organizations (SDOs), and considers UTM governance paradigms and challenges. FEATURES Describes UTM concept of operations (ConOps) and global variations in architectures Explores envisioned UTM services, including flight planning, strategic coordination, conformance monitoring, contingency management, constraints and geo-awareness, and remote identification Highlights cybersecurity standards development and awareness Covers approaches to the approval, management, and oversight of UTM components and ecosystem Considers the future of UTM and potential barriers to its success, international coordination, and regulatory reform This book is an essential, in-depth, annotated resource for developers, unmanned aircraft system operators, pilots, policy makers, researchers, and academics engaged in unmanned systems, transportation management, and the future of aviation.
This book presents analysis and design for a class of stochastic systems with semi-Markovian jump parameters. It explores systematic analysis of semi-Markovian jump systems via sliding mode control strategy which makes up the shortages in the analysis and design of stochastic systems. This text provides a novel estimation method to deal with the stochastic stability of semi-Markovian jump systems along with design of novel integral sliding surface. Finally, Takagi-Sugeno fuzzy model approach is brought to deal with system nonlinearities and fuzzy sliding mode control laws are provided to ensure the stabilization purpose. Features: Presents systematic work on sliding mode control (SMC) of semi-Markvoain jump systems. Explores SMC methods, such as fuzzy SMC, adaptive SMC, with the presence of generally uncertain transition rates. Provides novel method in dealing with stochastic systems with unknown switching information. Proposes more general theories for semi-Markovian jump systems with generally uncertain transition rates. Discusses practical examples to verify the effectiveness of SMC theory in semi-Markovian jump systems. This book aims at graduate and postgraduate students and for researchers in all engineering disciplines, including mechanical engineering, electrical engineering and applied mathematics, control engineering, signal processing, process control, control theory and robotics.
In this book, the stability analysis and estimator design problems are discussed for delayed discrete-time memristive neural networks. In each chapter, the analysis problems are firstly considered, where the stability, synchronization and other performances (e.g., robustness, disturbances attenuation level) are investigated within a unified theoretical framework. In this stage, some novel notions are put forward to reflect the engineering practice. Then, the estimator design issues are discussed where sufficient conditions are derived to ensure the existence of the desired estimators with guaranteed performances. Finally, the theories and techniques developed in previous parts are applied to deal with some issues in several emerging research areas. The book Unifies existing and emerging concepts concerning delayed discrete memristive neural networks with an emphasis on a variety of network-induced phenomena Captures recent advances of theories, techniques, and applications of delayed discrete memristive neural networks from a network-oriented perspective Provides a series of latest results in two popular yet interrelated areas, stability analysis and state estimation of neural networks Exploits a unified framework for analysis and synthesis by designing new tools and techniques in combination with conventional theories of systems science, control engineering and signal processing Gives simulation examples in each chapter to reflect the engineering practice
This book focuses on latent heat storage, which is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density with a smaller difference between storing and releasing temperatures. Thermal Energy Storage with Phase Change Materials is structured into four chapters that cover many aspects of thermal energy storage and their practical applications. Chapter 1 reviews selection, performance, and applications of phase change materials. Chapter 2 investigates mathematical analyses of phase change processes. Chapters 3 and 4 present passive and active applications for energy saving, peak load shifting, and price-based control heating using phase change materials. These chapters explore the hot topic of energy saving in an overarching way, and so they are relevant to all courses. This book is an ideal research reference for students at the postgraduate level. It also serves as a useful reference for electrical, mechanical, and chemical engineers and students throughout their work. FEATURES Explains the technical principles of thermal energy storage, including materials and applications in different classifications Provides fundamental calculations of heat transfer with phase change Discusses the benefits and limitations of different types of phase change materials (PCM) in both micro- and macroencapsulations Reviews the mechanisms and applications of available thermal energy storage systems Introduces innovative solutions in hot and cold storage applications
The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental physics behind the analysis and control of quantum dynamics, emphasizing the application of Lie algebra and Lie group theory. To advantage students, instructors and practitioners, and since the field is highly interdisciplinary, this book presents an introduction with all the basic notions in the same place. The field has seen a large development in parallel with the neighboring fields of quantum information, computation and communication. The author has maintained an introductory level to encourage course use. After introducing the basics of quantum mechanics, the book derives a class of models for quantum control systems from fundamental physics. It examines the controllability and observability of quantum systems and the related problem of quantum state determination and measurement. The author also uses Lie group decompositions as tools to analyze dynamics and to design control algorithms. In addition, he describes various other control methods and discusses topics in quantum information theory that include entanglement and entanglement dynamics. Changes to the New Edition: New Chapter 4: Uncontrollable Systems and Dynamical Decomposition New section on quantum control landscapes A brief discussion of the experiments that earned the 2012 Nobel Prize in Physics Corrections and revised concepts are made to improve accuracy Armed with the basics of quantum control and dynamics, readers will invariably use this interdisciplinary knowledge in their mathematics, physics and engineering work.
Accurate, fast, and reliable fault classification techniques are an important operational requirement in modern-day power transmission systems. Application of Signal Processing Tools and Neural Network in Diagnosis of Power System Faults examines power system faults and conventional techniques of fault analysis. The authors provide insight into artificial neural networks and their applications, with illustrations, for identifying power system faults. Wavelet transform and its application are discussed as well as an elaborate method of Stockwell transform. The authors also employ probabilistic neural networks (PNN) and back propagation neural networks (BPNN) to identify the different types of faults and determine their corresponding locations, respectively. Both PNN and BPNN are presented in detail, and their applications are illustrated through simple programming in MATLAB (R). Furthermore, their applications in fault diagnosis are discussed through multiple case studies. FEATURES Explores methods of fault identification through programming and simulation in MATLAB (R) Examines signal processing tools and their applications with examples Provides knowledge of artificial neural networks and their application with illustrations Uses PNN and BPNN to identify the different types of faults and obtain their corresponding locations Discusses the programming of signal processing using wavelet transform and Stockwell transform This book is designed for engineering students and for practitioners. Readers will find methods of programming and simulation of any network in MATLAB (R) as well as ways to extract features from a signal waveform by using a suitable signal processing toolbox and by application of artificial neural networks.
Machine learning approaches has the capability to learn and adapt to the constantly evolving demands of large Internet-of-energy (IoE) network. The focus of this book is on using the machine learning approaches to present various solutions for IoE network in smart cities to solve various research gaps such as demand response management, resource management and effective utilization of the underlying ICT network. It provides in-depth knowledge to build the technical understanding for the reader to pursue various research problems in this field. Moreover, the example problems in smart cities and their solutions using machine learning are provided as relatable to the real-life scenarios. Aimed at Graduate Students, Researchers in Computer Science, Electrical Engineering, Telecommunication Engineering, Internet of Things, Machine Learning, Green computing, Smart Grid, this book: Covers all aspects of Internet of Energy (IoE) and smart cities including research problems and solutions. Points to the solutions provided by machine learning to optimize the grids within a smart city set-up. Discusses relevant IoE design principles and architecture. Helps to automate various services in smart cities for energy management. Includes case studies to show the effectiveness of the discussed schemes.
This reference text discusses principles, design, and applications of various types of multiplier-cum-divider circuits (MCDs), and covers applications of operational amplifiers to perform as MCDs circuits The text covers principles of multiplying circuits, dividing circuits, square rooting, and vector magnitude circuits in detail. It discusses how multiplier-cum-divider circuits are developed with saw tooth and triangular waves. It covers important topics including non-linear op-amp circuits, triangular wave referenced multiplier-cum-divider with multiplexes, saw tooth wave referenced MCD with analog switches, peak responding MCD with analog switches and triangular wave referenced MCD with analog switches. The text will be useful for senior undergraduate, graduate students, and professionals in the fields of electrical engineering, and electronics and communication engineering. |
You may like...
Microgrids for Rural Areas - Research…
Rajeev Kumar Chauhan, Kalpana Chauhan, …
Hardcover
Compressed Air Energy Storage - Types…
David S.-K. Ting, Jacqueline A. Stagner
Hardcover
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Energy Production and Management in the…
Stavros Syngellakis, E. Magaril
Hardcover
R2,118
Discovery Miles 21 180
|