![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
This book deals in a basic and systematic manner with the fundamentals of random function theory and looks at some aspects related to arrival, vehicle headway and operational speed processes at the same time. The work serves as a useful practical and educational tool and aims at providing stimulus and motivation to investigate issues of such a strong applicative interest. It has a clearly discursive and concise structure, in which numerical examples are given to clarify the applications of the suggested theoretical model. Some statistical characterizations are fully developed in order to illustrate the peculiarities of specific modeling approaches; finally, there is a useful bibliography for in-depth thematic analysis.
This thesis proposes a new raft-type wave-powered desalination device that can convert wave power into hydraulic energy and use reverse osmosis (RO) to directly desalinate seawater. Both analytical and numerical methods are used to study the hydrodynamic characteristics of the device. Further, the thesis investigates the maximum power extraction and multiple parameter effects on power absorption and averaged permeate water flux. Lastly, it proposes and assesses two power extraction enhancing strategies. The thesis offers a valuable and important reference guide to ocean-wave-and-structure interaction and wave-powered seawater desalination for scientists and engineers alike.
Features * Offers a hands-on tutorial on interactive dynamic-system modeling and simulation * Includes examples from physics, aerospace engineering, population dynamics, and physiology * Contains hints for selecting integration rules and step size * Provides a complete, industrial-strength simulation program package on an accompanying CD-ROM New to This Edition * Introduces a new vectorizing compiler for fast vector operations and parameter-influence studies * Incorporates a new treatment of the difference equation programs for modeling sampled-data control systems with digital controllers * Presents improved versions of several classical simulation programs to illustrate useful programming tricks Summary Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author integrates a new treatment of the difference equation programs needed to model sampled-data control systems with digital controllers. Subsequent chapters provide detailed programming know-how. These chapters cover library, table-lookup, user-definable, limiter, switching, and noise functions; an experiment-protocol scripting language; powerful vector and matrix operations; and classical simulation programs that illustrate a number of useful programming tricks. The final chapter shows how experiment-protocol scripts and compiled DYNAMIC program segments can quickly solve mathematical problems, including fast graph plotting, Fourier transforms
A comprehensive approach to Wind Turbine Generator Systems (WTGS) and their operation in dynamic electric power system analysis. The presented advanced models arose from the author's research. They describe the complicated dynamical system behavior of wind turbines much better than the over-simplified static models. In particular, the control structure is taken into account. This book provides advanced tools for design, projection and optimization of turbines and systems that have yet not been available.
High-frequency switching power semiconductor devices are at the heart of power electronic converters. To date, these devices have been dominated by the well-established silicon (Si) technology. However, their intrinsic physical limits are becoming a barrier to achieving higher performance power conversion. Wide Bandgap (WBG) semiconductor devices offer the potential for higher efficiency, smaller size, lighter weight, and/or longer lifetime. Applications in power grid electronics as well as in electromobility are on the rise, but a number of technological bottle-necks need to be overcome if applications are to become more widespread - particularly packaging. This book describes the development of advanced multi-chip packaging solutions for novel WBG semiconductors, specifically silicon carbide (SiC) power MOSFETs. Coverage includes an introduction; multi-chip power modules; module design and transfer to SiC technology; electrothermal, thermo-mechanical, statistical and electromagnetic aspects of optimum module design; high temperature capable SiC power modules; validation technologies; degradation monitoring; and emerging packaging technologies. The book is a valuable reference for researchers and experts in academia and industry.
"Thermo-Fluid Behaviour of Periodic Cellular Metals" introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach. The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi an Jiaotong University, Xi an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi an Jiaotong University. Dr. Ting Wen is now an engineer at Shell Global Solutions Inc. Dr. Lu and Dr. Xu are also affiliated with Biomedical Engineering and Biomechanics Center, Xi an Jiaotong University."
A COMPREHENSIVE REFERENCE TO THE MOST RECENT ADVANCEMENTS IN OFFSHORE WIND TECHNOLOGY Offshore Wind Energy Technology offers a reference based on the research material developed by the acclaimed Norwegian Research Centre for Offshore Wind Technology (NOWITECH) and material developed by the expert authors over the last 20 years. This comprehensive text covers critical topics such as wind energy conversion systems technology, control systems, grid connection and system integration, and novel structures including bottom-fixed and floating. The text also reviews the most current operation and maintenance strategies as well as technologies and design tools for novel offshore wind energy concepts. The text contains a wealth of mathematical derivations, tables, graphs, worked examples, and illustrative case studies. Authoritative and accessible, Offshore Wind Energy Technology: Contains coverage of electricity markets for offshore wind energy and then discusses the challenges posed by the cost and limited opportunities Discusses novel offshore wind turbine structures and floaters Features an analysis of the stochastic dynamics of offshore/marine structures Describes the logistics of planning, designing, building, and connecting an offshore wind farm Written for students and professionals in the field, Offshore Wind Energy Technology is a definitive resource that reviews all facets of offshore wind energy technology and grid connection.
Silicon on Insulator is more than a technology, more than a job, and more than a venture in microelectronics; it is something different and refreshing in device physics. This book recalls the activity and enthu siasm of our SOl groups. Many contributing students have since then disappeared from the SOl horizon. Some of them believed that SOl was the great love of their scientific lives; others just considered SOl as a fantastic LEGO game for adults. We thank them all for kindly letting us imagine that we were guiding them. This book was very necessary to many people. SOl engineers will certainly be happy: indeed, if the performance of their SOl components is not always outstanding, they can now safely incriminate the relations given in the book rather than their process. Martine, Gunter, and Y. S. Chang can contemplate at last the amount of work they did with the figures. Our SOl accomplices already know how much we borrowed from their expertise and would find it indecent to have their detailed contri butions listed. Jean-Pierre and Dimitris incited the book, while sharing their experience in the reliability of floating bodies. Our families and friends now realize the SOl capability of dielectrically isolating us for about two years in a BOX. Our kids encouraged us to start writing. Our wives definitely gave us the courage to stop writing. They had a hard time fighting the symptoms of a rapidly developing SOl allergy."
Atmospheric ice takes a wide range of fascinating forms, all beautiful in their own ways but many posing severe risk to the security of overhead networks for electric power, communications and other systems. This comprehensive book documents the fundamentals of atmospheric icing and surveys the state of the art in eight chapters, each written by a team of experienced and internationally renowned experts. The treatment is detailed and richly illustrated. The presentation follows a logical sequence, starting with the icing climate and meteorological conditions, proceeding through development of observations and models of accretion and release of ice and heavy snow, then considering static and dynamic mechanical loads, the effects of ice and snow on electrical insulation, de-icing, ice prevention and mitigation methods. The statistical analysis of icing data and the mathematical and numerical modelling support appropriate mechanical and electrical design processes for icing conditions on overhead lines. Technical specialists, researchers and students in engineering and environmental science will all find value throughout the text.
Successfully classroom-tested at the graduate level, Linear Control Theory: Structure, Robustness, and Optimization covers three major areas of control engineering (PID control, robust control, and optimal control). It provides balanced coverage of elegant mathematical theory and useful engineering-oriented results. The first part of the book develops results relating to the design of PID and first-order controllers for continuous and discrete-time linear systems with possible delays. The second section deals with the robust stability and performance of systems under parametric and unstructured uncertainty. This section describes several elegant and sharp results, such as Kharitonov's theorem and its extensions, the edge theorem, and the mapping theorem. Focusing on the optimal control of linear systems, the third part discusses the standard theories of the linear quadratic regulator, Hinfinity and l1 optimal control, and associated results. Written by recognized leaders in the field, this book explains how control theory can be applied to the design of real-world systems. It shows that the techniques of three term controllers, along with the results on robust and optimal control, are invaluable to developing and solving research problems in many areas of engineering.
This book presents revealing case studies on carbon footprint calculation and mitigation in various industrial sectors. There are numerous sectors whose carbon footprints need to be calculated, and effective ways to mitigate the greenhouse-gas emissions from these sectors need to be found. Using representative case studies, this book highlights the carbon footprint of national power generation systems, crude glycerol production plants and the Brazilian highway network system, as well as the integration of renewable energy sources in expansion planning, so as to promote and implement power system decarbonization.
This book is based on the author's 50+ years experience in the power and distribution transformer industry. The first few chapters of the book provide a step-by-step procedures of transformer design. Engineers without prior knowledge or exposure to design can follow the procedures and calculation methods to acquire reasonable proficiency necessary to designing a transformer. Although the transformer is a mature product, engineers working in the industry need to understand its fundamentals oand design to enable them to offer products to meet the challenging demands of the power system and the customer. This book can function as a useful guide for practicing engineers to undertake new designs, cost optimization, design automation etc., without the need for external help or consultancy. The book extensively covers the design processes with necessary data and calculations from a wide variety of transformers, including dry-type cast resin transformers, amorphous core transformers, earthing transformers, rectifier transformers, auto transformers, transformers for explosive atmospheres, and solid-state transformers. The other subjects covered include, carbon footprint salculation of transformers, condition monitoring of transformers and design optimization techniques. In addition to being useful for the transformer industry, this book can serve as a reference for power utility engineers, consultants, research scholars, and teaching faculty at universities.
This book uses the metaphor "The economy is society's metabolism" as a springboard to develop a rigorous theoretical framework for a better system of national accounts which goes "Beyond GDP" and is relevant to the age of resource depletion. Society is entering a new era in which biophysical limits related to natural resource extraction rates and the biosphere's waste assimilation capacity are becoming binding constraints on mature economies. Unfortunately, the data needed for policy-makers to understand and manage economic growth in this new era are not universally available. All stakeholders need a new way to understand our economy in the context of the biosphere's ability to provide essential natural capital, and we suggest that detailed information about materials, energy, embodied energy, and energy intensity should be routinely gathered, analyzed, and disseminated from a centralized location to provide markets and policymakers with a more comprehensive understanding of the biophysical economy. However, a firm theoretical foundation is needed before proceeding along this new path, which this book is intended to provide. After arguing that the stock of manufactured capital is an important driver of material and energy demands imposed upon the biosphere, a new accounting framework is derived from the laws of thermodynamics to reflect the fact that material and embodied energy accumulate within the capital stock of economic sectors. This framework extends the Energy Input-Output (EI-O) techniques first developed by Bullard, Herendeen, and others to estimate energy intensity of economic products. Implications from the new framework are discussed, including the value of economic metrics for policy-making, the need for physically-based rather than product-based EI-O formulations, a re-assessment of the concept of economic "growth," and an evaluation of recycling, reuse, and dematerialization. The framework also provides an opportunity to assess an array of definitions for Daly's "steady-state economy" in relation to the ideal of a sustainable economy. The book ends with a list of steps to be taken in creating a more comprehensive system of national accounts: National accounting agencies worldwide should develop and maintain balance sheets of both natural and manufactured capital in addition to national income statements All stocks and inter-sector flows should be provided in physical as well as financial units In the US, the Bureau for Economic Analysis (BEA) should restart detailed Capital, Labor, Energy, Material, and Services (KLEMS) reporting National accounting agencies should routinely estimate the energy intensity of economic products, and all of the above should be estimated and disseminated on an annual basis.
This thesis describes the working design principles of triboelectric mechanism-based devices. It presents an extensive study undertaken to explain the effect of surface topographies on the performance of triboelectric nanogenerators. It demonstrates the application of triboelectric mechanisms in the area of physical sensing such as force sensing and pressure sensing. It also discusses the major fabrication methods/techniques that can be used to realize these devices. It is a valuable reference resource for graduate students, researchers and scientists interested in exploring the potential of triboelectric mechanisms for energy harvesting and other applications.
Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges. "This book proposes a broad detailed overview of the actual scientific knowledge about pavements linked to climate change, energy and sustainability at the international level in an original multidimensional/multi-effects way. By the end, the reader will be aware of the whole global issues to care about for various pavement technical features around the world, among which the implications of modelling including data collection, challenging resources saving and infrastructures services optimisation. This is a complete and varied work, rare in the domain." Dr. Agnes Jullien Research Director Director of Environmental, Development, Safety and Eco-Design Laboratory (EASE) Department of Development, Mobility and Environment Ifsttar Centre de Nantes Cedex- France "An excellent compilation of latest developments in the field of sustainable pavements. The chapter topics have been carefully chosen and are very well-organized with the intention of equipping the reader with the state-of-the-art knowledge on all aspects of pavement sustainability. Topics covered include pavement Life Cycle Analysis (LCA), pervious pavements, cool pavements, photocatalytic pavements, energy harvesting pavements, etc. which will all be of significant interest to students, researchers, and practitioners of pavement engineering. This book will no doubt serve as an excellent reference on the topic of sustainable pavements." Dr. Wei-Hsing Huang Editor-in-Chief of International Journal of Pavement Research and Technology (IJPRT) and Professor of Civil Engineering National Central University Taiwan
The book gives a comprehensive overview of technologies for decentralised power generation (DG technologies), including those based on both renewable energy sources (RES), and on combined heat and power (CHP) technologies, and of relevant policies of the EU and its Member States. Special attention is paid to barriers to implementation and success factors that were drawn from 24 case studies carried out throughout the EU. Furthermore, the book offers policy recommendations regarding how to move towards a level playing field for DG technologies. Additionally, the analysis is founded on the results of a study for future developments in European DG technologies and likely scenarios for the role of DG in the future.
Human reliability, error, and human factors in the area of power generation have been receiving increasing attention in recent years. Each year billions of dollars are spent in the area of power generation to design, construct/manufacture, operate, and maintain various types of power systems around the globe, and such systems often fail due to human error. This book compiles various recent results and data into one volume, and eliminates the need to consult many diverse sources to obtain vital information. It enables potential readers to delve deeper into a specific area, providing the source of most of the material presented in references at the end of each chapter. Examples along with solutions are also provided at appropriate places, and there are numerous problems for testing the reader's comprehension. Chapters cover a broad range of topics, including general methods for performing human reliability and error analysis in power plants, specific human reliability analysis methods for nuclear power plants, human factors in control systems, and human error in power plant maintenance. They are written in such a manner that the potential reader requires no previous knowledge to understand their contents. "Human Reliability, Error, and Human Factors in Power Generation" will prove useful to many individuals, including engineering professionals working in the power generation industry, researchers, instructors, and undergraduate and graduate students in the field of power engineering.
Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on the well-known classical Proportional-Integral-Derivative (PID) controllers theory and design methods. In particular, the text discusses fuzzy PID controllers in detail, including a description of the new notion of generalized verb-based fuzzy-logic control theory. Introduction to Fuzzy Systems is primarily designed to provide training for systems and control majors, both senior undergraduate and first year graduate students, to acquaint them with the fundamental mathematical theory and design methodology required to understand and utilize fuzzy control systems.
This work tackles the problems of understanding how energy is transmitted and distributed in power-grids as well as in determining how robust this transmission and distribution is when modifications to the grid or power occur. The most important outcome is the derivation of explicit relationships between the structure of the grid, the optimal transmission and distribution of energy, and the grid's collective behavior (namely, the synchronous generation of power). These relationships are extremely relevant for the design of resilient power-grid models. To allow the reader to apply these results to other complex systems, the thesis includes a review of relevant aspects of network theory, spectral theory, and novel analytical calculations to predict the existence and stability of periodic collective behavior in complex networks of phase oscillators, which constitute a paradigmatic model for many complex systems.
This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control strategies to minimize load variance, smart PEV load management based on load forecasting, integrating renewable energy sources such as photovoltaic arrays to supplement grid power, using wireless communication networks to coordinate the charging load of a smart grid and using market price of electricity and customers payment to coordinate the charging load. Hence, this book proposes many new strategies proposed recently by the researchers around the world to address the issues related to coordination of charging load of PEVs in a future smart grid.
A translation of a successful Russian monograph, this is the first book dealing comprehensively and on a scientific level with the insulation of high-voltage electrophysical systems. Prof. Ushakov is a respected authority in this field. |
![]() ![]() You may like...
Formation of the Earth, Grade 9 - STEM…
Carla C. Johnson, Janet B. Walton, …
Paperback
Nature and Properties of Soils, The…
Raymond Weil, Nyle Brady
Paperback
R2,577
Discovery Miles 25 770
Malware Analysis Using Artificial…
Mark Stamp, Mamoun Alazab, …
Hardcover
R5,226
Discovery Miles 52 260
World Seas: An Environmental Evaluation…
Charles Sheppard
Paperback
Smart Log Data Analytics - Techniques…
Florian Skopik, Markus Wurzenberger, …
Hardcover
R4,237
Discovery Miles 42 370
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
Millimeter-Wave Networks - Beamforming…
Peng Yang, Wen Wu, …
Hardcover
R4,231
Discovery Miles 42 310
Cloud-Resolving Modeling of Convective…
Xiaofan Li, Shouting Gao
Hardcover
R4,382
Discovery Miles 43 820
Earth's Oldest Rocks
Martin J. Van Kranendonk, Vickie Bennett, …
Paperback
|