![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Power generation & distribution
The book adopts an innovative analytical approach to agenda setting by not only presenting successful cases in which energy issues were addressed by means of public policy, but by also analyzing failed attempts to make issues part of the European policy agenda. Another outstanding feature of the book is its use of the latest empirical data on a broad range of energy issues. When are energy issues likely to find their way to the agenda of European policymakers? This is the key research question guiding this collection of empirical studies, which will shed light on both successful and unsuccessful attempts to include energy issues in the European agenda. The multi-level political system of the European Union represents a particularly fruitful setting for addressing this question due to the multiple institutional access points it provides for different groups of actors. The book has three key benefits. First, it provides a theory-informed analysis of agenda setting processes in general and in the European Union in particular. Second, it presents an overview of the most important and emerging dimensions on European energy policy, and third, it helps to develop a research agenda for future research in the field.
These Proceedings gather outstanding papers submitted to the 2014 SAE-China Congress, the majority of which are from China, the most dynamic car market in the world. The book covers a wide range of automotive topics, presenting the latest technical achievements in the industry. Many of the approaches it presents can help technicians to solve the practical problems that most affect their daily work.
This book is the fourth volume of the sub series of the Lecture Notes in Mobility dedicated to Road Vehicle Automation. lts chapters have been written by researchers, engineers and analysts from all around the globe. Topics covered include public sector activities, human factors and challenges, ethical, legal, energy and technology perspectives, vehicle systems development, as well as transportation infrastructure and planning. The book is based on the Automated Vehicles Symposium which took place in San Francisco, California (USA) in July 2016.
Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group "Underground Storage of CO2 and Energy", is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme "Clean Energy Systems in the Subsurface: Production, Storage and Conversion". This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coal Bedded Methane and Geothermal Systems Trapping Mechanisms and Multi-Barrier Sealing Systems for Long-Term CO2 Storage Coupled THMC-Processes and Numerical Modelling Rock Mechanical Behaviour Considering Cyclic Loading, Dilatancy, Damage, Self-sealing and Healing Underground Storage and Supply of Energy "Clean energy systems in the subsurface" will be invaluable to researchers, scientists and experts in both academia and industry trying to find a long lasting solution to the problems of global climate change, energy security and sustainability.
High-speed, power-efficient analog integrated circuits can be used as standalone devices or to interface modern digital signal processors and micro-controllers in various applications, including multimedia, communication, instrumentation, and control systems. New architectures and low device geometry of complementary metaloxidesemiconductor (CMOS) technologies have accelerated the movement toward system on a chip design, which merges analog circuits with digital, and radio-frequency components.
Major changes have occurred in both the composition of energy supply and the choice of technology, especially in activities in which energy intensity has a significant bearing on the costs and competitiveness of goods and services. Presented here, in the context of these changes, are case studies on the macroeconomic evaluation of ethylalcohol programs and the microeconomic evaluation of technologies for irrigation pumping. "Environment and Resource Conservation" During the last decade, a large volume of literature has addressed the two major policy issues concerning energy programs in developing countries: overall energy conservation and provision of energy for rural development needs. Yet, many of these works have been supply-sided without adequate analysis of users' needs and the different option to meet them. Ex-post evaluations of existing field experiences with renewable technologies are still scarce, and many of those which have appeared provide limited insights for planning and implementation in different countries. Socioeconomic Aspects of Renewable Energy Technologies addresses these oversights. A selected number of technologies and topics concerning renewable energy sources for developing countries are discussed, including ethanol and the macro-economic evaluation of ethanol programs; various renewable energy technologies for end-use such was water-pumping for irrigation; and the micro-economic evaluation of these additional technologies.
This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.
Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: 1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; 2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and 3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field. China Automotive Energy Research Center (CAERC), Tsinghua University, established in 2008, is a university-wide interdisciplinary automotive energy research institution affiliated to Laboratory of Low Carbon Energy (LCE), Tsinghua University. More than 30 researchers are working at CAERC, including six full professors. CAERC's mission is to create and disseminate sustainable automotive energy knowledge, research and development of integrated automotive energy system assessment methodologies and models, and provide technological and policy options for sustainable automotive energy system transformation in China and the world.
This comprehensive book covers flexible fiber-shaped devices in the area of energy conversion and storage. The first part of the book introduces recently developed materials, particularly, various nanomaterials and composite materials based on nanostructured carbon such as carbon nanotubes and graphene, metals and polymers for the construction of fiber electrodes. The second part of the book focuses on two typical twisted and coaxial architectures of fiber-shaped devices for energy conversion and storage. The emphasis is placed on dye-sensitized solar cells, polymer solar cells, lithium-ion batteries, electrochemical capacitors and integrated devices. The future development and challenges of these novel and promising fiber-shaped devices are summarized in the final part. This book is the first to introduce fiber-shaped electronic devices, which offer many fascinating advantages compared with the conventional planar structure. It is particularly designed to review the state-of-art developments in fiber-shaped devices for energy conversion and storage. The book will provide a valuable resource for researchers and students working in a wide variety of fields such as advanced materials, new energy, electrochemistry, applied physics, nanoscience and nanotechnology, and polymer science and engineering. Huisheng Peng, PhD, is a Professor and Associate Chair of the Department of Macromolecular Science and PI of the Laboratory of Advanced Materials, Fudan University, Shanghai, China.
In the past decade, there has been a substantial increase of grid-feeding photovoltaic applications, thus raising the importance of solar electricity in the energy mix. This trend is expected to continue and may even increase. Apart from the high initial investment cost, the fluctuating nature of the solar resource raises particular insertion problems in electrical networks. Proper grid managing demands short- and long-time forecasting of solar power plant output. "Weather modeling and forecasting of PV systems operation" is focused on this issue. Models for predicting the state of the sky, nowcasting solar irradiance and forecasting solar irradiation are studied and exemplified. Statistical as well as artificial intelligence methods are described. The efficiency of photovoltaic converters is assessed for any weather conditions. "Weather modeling and forecasting of PV systems operation" is
written for researchers, engineers, physicists and students
interested in PV systems design and utilization.
The protection which is installed on an industrial power system is likely to be subjected to more difficult conditions than the protection on any other kind of power system. Starting with the many simple devices which are employed and covering the whole area of industrial power system protection, this book aims to help achieve a thorough understanding of the protection necessary. Vital aspects such as the modern cartridge fuse, types of
relays, and the role of the current transformer are covered and the
widely used inverse definite-minimum time overcurrent relay, the
theory of the Merz-Price protection system and the development of
the high-impedance relay system are critically examined. This new
edition has come about in response to the dramatic change from the
use of electro-magnetic relays to electronic and micro-processor
relays which figure in practically all new installations.
Therefore, although the theory and usage are the same, the
application can be much improved owing to the increased range and
accuracy and the added facilities provided with the modern relays.
This book reflects the change and explains the technical
advantages.
This book provides specific topics intending to contribute to an improved knowledge on Technology Evaluation and Selection in a Life Cycle Perspectives. Although each chapter will present possible approaches and solutions, there are no recipes for success. Each reader will find his/her balance in applying the different topics to his/her own specific situation. Case studies presented throughout will help in deciding what fits best to each situation, but most of all any ultimate success will come out of the interplay between the available solutions and the specific problem or opportunity the reader is faced with.
The study of circuits is the foundation on which most other courses in the electrical engineering curriculum are based. For this reason the first course in circuit analysis must be appropriate to the succeeding specializations, which may be classified into two groups. One is a specialization in electro nics, microelectronics, communications, computers etc. , or so-called low current, low-voltage engineering. The other is in power electronics, power systems, energy conversion devices etc. , or so-called high-current, high voltage engineering. It is evident that although there are many common teaching topics in the basic course of circuit analysis, there are also certain differences. Unfortunately most of the textbooks in this field are written from the 'electronic engineer's viewpoint', i. e. with the emphasis on low current systems. This brought the author to the conclusion that there is a definite disad vantage in not having a more appropriate book for the specializations in high-current, high-voltage engineering. Thus the idea for this book came into being. The major feature distinguishing this book from others on circuit analysis is in delivering the material with a very strong connection to the specializations in the field of power systems, i. e. in high-current and high voltage engineering. The author believes that this emphasis gives the reader more opportunity for a better understanding and practice of the material which is relevant for power system network analysis, and to prepare students for their further specializations.
This handbook on power systems consists of a set of 4 volumes. These books are carefully planned and designed to provide the state of art material on major aspects of electrical power systems, short-circuit currents, load flow, harmonics and protective relaying. Many aspects of power systems are transparent between different types of studies and analyses; knowledge of short-circuit currents and symmetrical component is required for protective relaying, and fundamental frequency load flow is required for harmonic analysis. Currently, power systems, large or small, are analyzed on digital computers with appropriate software. However, it is necessary to understand the theory and basis of these calculations to debug and decipher the results. The material is organized with sound theoretical base, practical applications, and case studies based on the author's 45+ years of experience with real world problems.
This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development.
Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers. Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode control (SMC) has been most widely investigated and proved to be a more feasible alternative than fuzzy and adaptive control for existing and future power converters. Bridging the gap between power electronics and control theory, this book employs a top-down instructional approach to discuss traditional and modern SMC techniques. Covering everything from equations to analog implantation, it: Provides a comprehensive general overview of SMC principles and methods Offers advanced readers a systematic exposition of the mathematical machineries and design principles relevant to construction of SMC, then introduces newer approaches Demonstrates the practical implementation and supporting design rules of SMC, based on analog circuits Promotes an appreciation of general nonlinear control by presenting it from a practical perspective and using familiar engineering terminology With specialized coverage of modeling and implementation that is useful to students and professionals in electrical and electronic engineering, this book clarifies SMC principles and their application to power converters. Making the material equally accessible to all readers, whether their background is in analog circuit design, power electronics, or control engineering, the authors-experienced researchers in their own right-elegantly and practically relate theory, application, and mathematical concepts and models to corresponding industrial targets.
The use of fossil fuels has generated an increasing amount of interest in renewable energy resources. Energy policies and management are of primary importance to achieve the development of sustainability and need to be consistent with recent advances in energy production and distribution. Challenges lie as much in the conversion from renewable energies such as wind and solar to useful forms like electricity, heat and fuel at an acceptable cost (including environmental damage) as in the integration of these resources into an existing infrastructure. This volume includes collaborative research between different disciplines, including materials, energy networks, new energy resources, storage solutions, waste to energy systems, smart grids and many other related subjects.
This edited book focuses on recent developments in Dynamic Network Modeling, including aspects of route guidance and traffic control as they relate to transportation systems and other complex infrastructure networks. Dynamic Network Modeling is generally understood to be the mathematical modeling of time-varying vehicular flows on networks in a fashion that is consistent with established traffic flow theory and travel demand theory. Dynamic Network Modeling as a field has grown over the last thirty years, with contributions from various scholars all over the field. The basic problem which many scholars in this area have focused on is related to the analysis and prediction of traffic flows satisfying notions of equilibrium when flows are changing over time. In addition, recent research has also focused on integrating dynamic equilibrium with traffic control and other mechanism designs such as congestion pricing and network design. Recently, advances in sensor deployment, availability of GPS-enabled vehicular data and social media data have rapidly contributed to better understanding and estimating the traffic network states and have contributed to new research problems which advance previous models in dynamic modeling. A recent National Science Foundation workshop on "Dynamic Route Guidance and Traffic Control" was organized in June 2010 at Rutgers University by Prof. Kaan Ozbay, Prof. Satish Ukkusuri , Prof. Hani Nassif, and Professor Pushkin Kachroo. This workshop brought together experts in this area from universities, industry and federal/state agencies to present recent findings in this area. Various topics were presented at the workshop including dynamic traffic assignment, traffic flow modeling, network control, complex systems, mobile sensor deployment, intelligent traffic systems and data collection issues. This book is motivated by the research presented at this workshop and the discussions that followed.
This monograph presents a tactical planning approach for service network design in metropolitan areas. Designing the service network requires the suitable aggregation of demand data as well as the anticipation of operational relocation decisions. To this end, an integrated approach of data analysis and mathematical optimization is introduced. The book also includes a case study based on real-world data to demonstrate the benefit of the proposed service network design approach. The target audience comprises primarily research experts in the field of traffic engineering, but the book may also be beneficial for graduate students.
This book presents a thorough analysis of newly available sinusoidal three-phase windings in electrical machines, which provide many benefits over traditional windings, including energy savings, noise and vibration reduction, and reduced need for non-ferrous metals. The author's instruction on the implementation of this innovative optimization will be quite useful to researchers, developers and producers of electrical machines, as well as students mastering electromechanics.
This work provides an in-depth case-study of decision-making in the Soviet Union in the Stalin era. It focuses on the development of rail transport policy, upon which the entire economy as well as the country's defence were so crucially dependent. It analyses the role of institutional lobbies in shaping policy, and sheds new light on the Stakhanovite movement, and analyses for the first time the impact of the Great Purges on the railways. The work provides a critical examination of the adequacy of existing conceptualisations of the Stalinist state.
This thesis describes a new approach to the construction of "solar cells." Following nature's example, this approach has the goal to find a biomimetic self-assembling dye, whose aggregates can mimic the natural light-harvesting system of special photosynthetic active bacteria. The thesis investigates methods to control the self-assembly such that suitable dye aggregates are formed with high internal order and size-confinement. The dye aggregates can be implemented into a new type of "solar cells," designed to combine the advantages of "hybrid solar cells" and "solid-state dye-sensitized solar cells" (ss-DSSCs): dye aggregate solar cells (DASCs). This book describes the construction and first tests of a prototype for DASCs on the basis of the investigated dye aggregates. The described approach has the advantage that it will enable to build up a light-harvesting system fully synthetically in large scale in order to realize low-cost, light-weight and environmentally friendly solar cells - a worthwhile goal towards the exploitation of clean energy from sunlight.
Transient Stability of Power Systems is a monograph devoted to a hybrid-direct temporal method called SIME (for Single Machine Equivalent). SIME processes temporal information about the multimachine system dynamics to assess and control any type of transient instabilities under any type and model of power systems. Two approaches may be distinguished depending upon the source of information used: Preventative SIME' which relies on a time-domain program to simulate anticipated contingencies, and Emergency SIME' which uses real-time measurements. Preventative SIME mainly comprises two techniques: contingency filtering, ranking, and assessment; and (simultaneous) stabilization of harmful contingencies. The resulting preventative transient stability assessment and control (TSA&C) software can be used in all application contexts of transient stability studies. In a control center, for instance, its computational performances enable it to cope with very stringent requirements of real-time operation. Besides, interfacing SIME with an OPF algorithm allows combining transient stability constraints with specifics of the liberalized electricity market. Emergency SIME is a novel closed-loop control technique which contains the transient instabilities caused by contingencies' actual occurrence. It relies on real-time measurements to predict (the size of) instability and, accordingly, to design and trigger control actions able to impede system loss of synchronism. Emergency SIME is particularly suitable for protecting important generation sites and can complement preventative SIME. Both approaches rely on the same principles and basic software which yields a comprehensive and unified approach toTSA&C. The design of near optimal control techniques is a major asset of this software. This book provides extensive illustrations on a variety of power systems ranging from a simple 3-machine test system to real-world power systems comprising up to 627 generators and 4112 busses. Transient Stability of Power Systems will be especially helpful to researchers, utility engineers, and software designers and developers who are developing various types of transient stability software packages.
a oeHydrogen-based Autonomous Power Systemsa analyses the introduction of hydrogen energy technologies in autonomous power systems based on renewable energy sources (RES). The book contains a review of hydrogen technologies suitable for RES-based autonomous power systems, presents already-existing demonstration hydrogen-based power systems, and provides concrete examples for the integration of hydrogen technologies into existing autonomous power systems. Technical and economic analyses of hydrogen-based power systems are included, with illustrations and graphs, which are a useful tool for conducting pre-feasibility analyses of such power systems. The book is a valuable resource for researchers and students in the fields of hydrogen energy technologies, renewable energy power systems, and distributed generation.
Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields. |
You may like...
View-Dependent Character Animation
Parag Chaudhuri, Prem Kalra, …
Hardcover
R2,653
Discovery Miles 26 530
Recent Advances in Multimedia Signal…
Mislav Grgic, Kresimir Delac, …
Hardcover
R4,131
Discovery Miles 41 310
The Challenge of Chance - A…
Klaas Landsman, Ellen Van Wolde
Hardcover
R1,933
Discovery Miles 19 330
Space Modeling with SolidWorks and NX
Joze Duhovnik, Ivan Demsar, …
Hardcover
R3,299
Discovery Miles 32 990
|