![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
Key features: Presents a theoretical outline for each chapter. Motivates the students with standard mechanics problems with step-by-step explanations. Challenges the students with more complex problems with detailed solutions.
This book contains lectures given at the Institute for Scientific Interchange (I.S.I., Turin) in 1983 - 1984 on the exact solution of the 8-vertex and related models and extensions of the Baxter model to 3 dimensions.
- Focuses on a very physical and specific understanding of how humans measure and interpret the measurements of the quantity of time, unlike existing books which explore qualitative, speculative theories currently entertained in physics and philosophy.
"A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological systems and batteries, adsorption processes in biological systems, diamagnetism, the theory of Bose-Einstein condensation, memory effects in Brownian motion, the hydrodynamics of binary mixtures. A set of exercises and problems is to be found at the end of each chapter and, in addition, solutions to a subset of the problems is provided. The appendices cover Exact Differentials, Ergodicity, Number Representation, Scattering Theory, and also a short course on Probability.
- Newly updated. Addresses environmental issues as well as applications of thermodynamics to current and alternative energy sources and applications - Answers the most commonly asked questions relating to thermodynamics, such as the difference between entropy and enthalpy and the first name of Maxwell's demon - Precedes each group of related questions with an introductory overview - Emphasizes qualitative understanding - Includes many illustrative materials throughout to reinforce key concepts - Requires no prior background in the subject
* Materials are presented to guide the reader with ease through a difficult subject by providing extra help whenever needed to overcome the more demanding technical and conceptual aspects * Active reading strategies (conceptual problems, discussion questions, worked examples with comments, end of chapter problems, further reading etc.) to stimulate engagement with the text through active, critical thought * Well-balanced textbook design (including introductions, illustrations, keywords defined, highlights, notes in margins, summary of key ideas and concepts, boxes with additional topics that complement the materials presented in the main text)
Presents simplified but useful and practical equations that can be applied in estimating performance and design of energy-efficient systems in low-temperature systems or cryogenics Contains practical approaches and advanced design materials for insulation, shields/anchors, cryogen vessels/pipes, calorimeters, cryogenic heat switches, cryostats, current leads, and RF couplers Provides a comprehensive introduction to the necessary theory and models needed for solutions to common difficulties and illustrates the engineering examples with about 300 figures
Remains accessible but incorporates a rigorous mathematical treatment with clarity and emphasizing a contemporary style and a rejuvenated approach Presents a student-friendly and self-contained structure Balances theory and worked examples
- New advancements of fractal analysis with applications to many scientific, engineering, and societal issues - Recent changes and challenges of fractal geometry with the rapid advancement of technology - Attracted chapters on novel theory and recent applications of fractals. - Offers recent findings, modelling and simulations of fractal analysis from eminent institutions across the world - Analytical innovations of fractal analysis - Edited collection with a variety of viewpoints
This new edition of College Physics Essentials provides a streamlined update of a major textbook for algebra-based physics. The first volume covers topics such as mechanics, heat, and thermodynamics. The second volume covers electricity, atomic, nuclear, and quantum physics. The authors provide emphasis on worked examples together with expanded problem sets that build from conceptual understanding to numerical solutions and real-world applications to increase reader engagement. Including over 900 images throughout the two volumes, this textbook is highly recommended for students seeking a basic understanding of key physics concepts and how to apply them to real problems.
Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.
Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.
This book is the distilled essence of the author teaching statistical mechanics to juniors, seniors and graduate students for over 50 years in various course settings. It uses a unique approach that leads naturally into the development of all possible ensembles. Much of the later chapters on polymers has previously been available only in the literature. Throughout the book, the assumption is made that the reader is still relatively raw, and mathematical detail is provided that other books leave to the abilities of the reader. While this produces a plethora of equations that mature scientists would regard as unnecessary, it is intended to help those just coming into the field and who want to get the idea without suffering hours of agony wondering, 'where did that come from?'.
The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
This book is the distilled essence of the author teaching statistical mechanics to juniors, seniors and graduate students for over 50 years in various course settings. It uses a unique approach that leads naturally into the development of all possible ensembles. Much of the later chapters on polymers has previously been available only in the literature. Throughout the book, the assumption is made that the reader is still relatively raw, and mathematical detail is provided that other books leave to the abilities of the reader. While this produces a plethora of equations that mature scientists would regard as unnecessary, it is intended to help those just coming into the field and who want to get the idea without suffering hours of agony wondering, 'where did that come from?'.
describes more than thirty Physics practicals at high school and undergraduate level. There's background information on each one, a description of the equipment needed, and how the experiment is performed. Uniquely, for those without access to a real laboratory, the book gives you access to highly detailed 3d simulations of all the experiments.
- It provides a rigorous mathematical and physical basis to techniques that are often introduced on empirical basis - While the book covers a broad range of techniques, it starts at a basic theoretical level. This gives the book a strong foundation and makes it accessible to students from various backgrounds. - Has a computational focus unlike many competing titles
The subject of compressible flow or gas dynamics deals with the thermo-fluid dynamic problems of gases and vapours, hence it is now an important part of both undergraduate and postgraduate curricula. Compressible Flow covers this subject in fourteen well organised chapters in a lucid style. A large mass of theoretical material and equations has been supported by a number of figures and graphical depictions. Moreover, the revised edition has an additional chapter on miscellaneous problems in compressible flow (gas dynamics)which has been designed to support the turorials, practice exercises and examinations. Problems have been specially chosen for students and engineers in the areas of aerospace, chemical, gas and mechanical engineering. Also the author's broad teaching experience is reflected in the clarity, and systematic and logical presentation of the book.
This book is a compilation of selected reviews by Professor Michael E Fisher. Fisher's major contributions to physics have been in equilibrium statistical mechanics, and have spanned the entire range of that subject. He has been credited with bringing together, and teaching a common language to chemists and physicists working on diverse problems of phase transitions.About the Book by the AuthorTalking informally in a clear way came naturally once intrigued by a field of science; that helped me accept the invitation to publish a collection of review articles. And working actively in an area has led me to express what is new in basic terms, with lots of figures framed, typically, via two- or three-dimensional images. Also encouraging was that my reviews - with crucial references - were recognized in 1983 by the U.S. National Academy of Sciences through their James Murray Luck Award for 'excellence in scientific reviewing.'However, the first article in this collection is by my postdoctoral mentor, Cyril Domb, whose inaugural lecture at King's College London was entitled: 'Statistical Physics and its Problems.' This provides readers with a context for some of the topics later reviewed in greater depth. Among the aspects then explained, are the various critical exponents: , , , and - the special exponents and for the correlation functions, and the scaling relations. Phase diagrams are examined thoroughly along with tricritical and bicritical points, Kosterlitz-Thouless points, protocriticality, etc. Random walks along with vicious walkers and their reunions are introduced. Biophysics is touched upon. The final article: 'Statistical Physics in the Oeuvre of Chen Ning Yang,' stems from the 2015 Conference on 60 Years of Yang-Mills Gauge Field Theories.In conclusion, it is hoped that a wide range of readers (and some experts also!) will enjoy dipping into the variety of reviews collected here.
Mathematical Physics for Nuclear Experiments presents an accessible introduction to the mathematical derivations of key equations used in describing and analysing results of typical nuclear physics experiments. Instead of merely showing results and citing texts, crucial equations in nuclear physics such as the Bohr's classical formula, Bethe's quantum mechanical formula for energy loss, Poisson, Gaussian and Maxwellian distributions for radioactive decay, and the Fermi function for beta spectrum analysis, among many more, are presented with the mathematical bases of their derivation and with their physical utility. This approach provides readers with a greater connection between the theoretical and experimental sides of nuclear physics. The book also presents connections between well-established results and ongoing research. It also contains figures and tables showing results from the author's experiments and those of his students to demonstrate experimental outcomes. This is a valuable guide for advanced undergraduates and early graduates studying nuclear instruments and methods, medical and health physics courses as well as experimental particle physics courses. Key features Contains over 500 equations connecting theory with experiments. Presents over 80 examples showing physical intuition and illustrating concepts. Includes 80 exercises, with solutions, showing applications in nuclear and medical physics.
Mathematical Physics for Nuclear Experiments presents an accessible introduction to the mathematical derivations of key equations used in describing and analysing results of typical nuclear physics experiments. Instead of merely showing results and citing texts, crucial equations in nuclear physics such as the Bohr's classical formula, Bethe's quantum mechanical formula for energy loss, Poisson, Gaussian and Maxwellian distributions for radioactive decay, and the Fermi function for beta spectrum analysis, among many more, are presented with the mathematical bases of their derivation and with their physical utility. This approach provides readers with a greater connection between the theoretical and experimental sides of nuclear physics. The book also presents connections between well-established results and ongoing research. It also contains figures and tables showing results from the author's experiments and those of his students to demonstrate experimental outcomes. This is a valuable guide for advanced undergraduates and early graduates studying nuclear instruments and methods, medical and health physics courses as well as experimental particle physics courses. Key features Contains over 500 equations connecting theory with experiments. Presents over 80 examples showing physical intuition and illustrating concepts. Includes 80 exercises, with solutions, showing applications in nuclear and medical physics.
- A brief and accessible introduction to a complex topic - Contains a thorough treatment of the motions of heavenly bodies than conventional elementary mechanics texts. - Provides a wealth of end-of-chapter exercises to test understanding
This book is a compilation of selected reviews by Professor Michael E Fisher. Fisher's major contributions to physics have been in equilibrium statistical mechanics, and have spanned the entire range of that subject. He has been credited with bringing together, and teaching a common language to chemists and physicists working on diverse problems of phase transitions.About the Book by the AuthorTalking informally in a clear way came naturally once intrigued by a field of science; that helped me accept the invitation to publish a collection of review articles. And working actively in an area has led me to express what is new in basic terms, with lots of figures framed, typically, via two- or three-dimensional images. Also encouraging was that my reviews - with crucial references - were recognized in 1983 by the U.S. National Academy of Sciences through their James Murray Luck Award for 'excellence in scientific reviewing.'However, the first article in this collection is by my postdoctoral mentor, Cyril Domb, whose inaugural lecture at King's College London was entitled: 'Statistical Physics and its Problems.' This provides readers with a context for some of the topics later reviewed in greater depth. Among the aspects then explained, are the various critical exponents: , , , and - the special exponents and for the correlation functions, and the scaling relations. Phase diagrams are examined thoroughly along with tricritical and bicritical points, Kosterlitz-Thouless points, protocriticality, etc. Random walks along with vicious walkers and their reunions are introduced. Biophysics is touched upon. The final article: 'Statistical Physics in the Oeuvre of Chen Ning Yang,' stems from the 2015 Conference on 60 Years of Yang-Mills Gauge Field Theories.In conclusion, it is hoped that a wide range of readers (and some experts also!) will enjoy dipping into the variety of reviews collected here. |
![]() ![]() You may like...
Research Anthology on Food Waste…
Information Reso Management Association
Hardcover
R9,172
Discovery Miles 91 720
Ford Fusion and Mercury Milan 2006 Thru…
Editors Of Haynes Manuals
Paperback
R788
Discovery Miles 7 880
|