![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
This book focuses on the nonlinear dynamics based on the vector fields with univariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems. It provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems. Such a two-dimensional dynamical system is one of simplest dynamical systems in nonlinear dynamics, but the local and global structures of equilibriums and flows in such two-dimensional quadratic systems help us understand other nonlinear dynamical systems, which is also a crucial step toward solving the Hilbert's sixteenth problem. Possible singular dynamics of the two-dimensional quadratic systems are discussed in detail. The dynamics of equilibriums and one-dimensional flows in two-dimensional systems are presented. Saddle-sink and saddle-source bifurcations are discussed, and saddle-center bifurcations are presented. The infinite-equilibrium states are switching bifurcations for nonlinear systems. From the first integral manifolds, the saddle-center networks are developed, and the networks of saddles, source, and sink are also presented. This book serves as a reference book on dynamical systems and control for researchers, students, and engineering in mathematics, mechanical, and electrical engineering.
Vortex flow is one of the fundamental types of fluid and gas motion. These flows are the most spectacular in the form of concentrated vortices, characterized by the localization of vorticity (curl of velocity) in bounded regions of a space, beyond which the vorticity is either absent or rapidly falls down to zero. Concentrated vortices are often observed in nature, exemplified by atmospheric cyclones, whirlwinds and tornados, oceanic vortices, whirlpools on a water s- face, and ring vortices caused by explosive outburst of volcanoes. In technical - vices concentrated vortices form when flow separates from sharp edges of flying vehicles and ships. Among these are vortices flowing off the ends of airplane wings, and intentionally generated vortices for intensification of burning in c- bustion chambers, vortices in cyclonic devices used for mixing or separation of impurities in fluids and gases. One such remarkable and frequent type of conc- trated vortices is a vortex ring which constitutes a vortex tube closed into a t- oidal ring moving in a surrounding fluid like an isolated body out of contact with solid boundaries of the flow region if such boundaries exist. Formation and motion of vortex rings are important part of the dynamics of a continuum medium and have been studied for more than a century.
The thesis presents a systematic study of the Mpemba effect in a colloidal system with a micron-sized particle diffusing in a water bath. While the Mpemba effect, where a system's thermal relaxation time is a non-monotonic function of the initial temperature, has been observed in water since Aristotle's era, the underlying mechanism of the effect is still unknown. Recent studies indicate that the effect is not limited to water and has been studied both experimentally and numerically in a wide variety of systems. By carefully designing a double-well potential using feedback-based optical tweezers, the author demonstrates that an initially hot system can sometimes cool faster than an initially warm system. The author also presents the first observation in any system of another counterintuitive effect-the inverse Mpemba effect-where the colder of the two samples reaches the thermal equilibrium at a hot temperature first. The results for both the observations agree with theoretical predictions based on the Fokker-Planck equation. The experiments reveal that, for carefully chosen conditions, a strong version of both of the effects are observed where a system can relax to the bath temperature exponentially faster than under typical conditions.
This book addresses the problem of multi-agent systems, considering that it can be interpreted as a generalized multi-synchronization problem. From manufacturing tasks, through encryption and communication algorithms, to high-precision experiments, the simultaneous cooperation between multiple systems or agents is essential to successfully carrying out different modern activities, both in academy and industry. For example, the coordination of multiple assembler robots in manufacturing lines. These agents need to synchronize. The first two chapters of the book describe the synchronization of dynamical systems, paying special attention to the synchronization of non-identical systems. Following, the third chapter presents an interesting application of the synchronization phenomenon for state estimation. Subsequently, the authors fully address the multi-agent problem interpreted as multi-synchronization. The final chapters introduce the reader to a more complex problem, the synchronization of systems governed by partial differential equations, both of integer and fractional order. The book aimed at graduates, postgraduate students and researchers closely related to the area of automatic control. Previous knowledge of linear algebra, classical and fractional calculus is requested, as well as some fundamental notions of graph theory.
This book gives a systematic investigation of convection in systems comprised of liquid layers with deformatable interfaces. This new edition includes completely updated and new material on flows in ultra thin films and brings up to date progress made in the technology on micro and nano scales. Also, this revised edition will reflect progress in thedynamics of complex fluids."
IoT-Enabled Multi-Energy Systems: From Isolated Energy Grids to Modern Interconnected Networks proposes practical solutions for the management and control of energy interactions throughout the interconnected energy infrastructures of the future multi-energy grid. The book discusses a panorama of modeling, planning and optimization considerations for IoT technologies, their applications across grid modernization, and the coordinated operation of multi-vector energy grids. The work is suitable for energy, power, mechanical, chemical, process and environmental engineers, and highly relevant for researchers and postgraduate students who work on energy systems. Sections address core theoretical underpinnings, significant challenges and opportunities, how to support IoT-based developed expert systems, and how AI can empower IoT technologies to sustainably develop fully renewable modern multi-carrier energy networks. Contributors address artificial intelligence technology and its applications in developing IoT-based technologies, cloud-based intelligent energy management schemes, data science and multi-energy big data analysis, machine learning and deep learning techniques in multi-energy systems, and much more.
This book starts with an introduction to the basic concepts of multistability, then illustrates how multistability arises in different systems and explains the main mechanisms of multistability emergence. A special attention is given to noise which can convert a multistable deterministic system to a monostable stochastic one. Furthermore, the most important applications of multistability in different areas of science, engineering and technology are given attention throughout the book, including electronic circuits, lasers, secure communication, and human perception. The book aims to provide a first approach to multistability for readers, who are interested in understanding its fundamental concepts and applications in several fields. This book will be useful not only to researchers and engineers focusing on interdisciplinary studies, but also to graduate students and technicians. Both theoreticians and experimentalists will rely on it, in fields ranging from mathematics and laser physics to neuroscience and astronomy. The book is intended to fill a gap in the literature, to stimulate new discussions and bring some fundamental issues to a deeper level of understanding of the mechanisms underlying self-organization of matter and world complexity.
This textbook on fire dynamics provides a comprehensive description of fuels involved in fires, definitions related to fire, thermodynamics for fire calculations, basics of transport processes and fundamental aspects of combustion related to fire, physical descriptions of premixed and non-premixed flames, detailed analysis of the characteristics of fires from solid and liquid fuels, including ignition, spread and burning rates and physical aspects of fire plumes, compartment fires and dust fires. The contents also highlight fundamental aspects related to the evaporation of liquid fuels and pyrolysis of solid fuels which are explained with simplified mathematical expressions. The book includes pedagogical features such as worked examples to illustrate mathematical calculations involved in fire analysis and end-of-chapter review questions. This book proves useful for students, researchers and industry professionals alike.
The Nature of Biological Systems as Revealed by Thermal Methods is a guide for experiments using thermal methods. The Editor has used his many years of experience to create a unique resource that will enable others with a less mathematical background, to realize the beauty and power of this tool and to gain a better understanding of biological problems. Biological calorimetry (and of course thermal analysis) is of increasing interest and is not covered thoroughly in other resources. The methods presented are macroscopic, for the rather inhomogeneous material (micromethods are often not possible or not pertinent). This book will help beginners in the field of thermal analysis or calorimetry understand the principles of thermodynamics being applied to biological systems. Biological systems are highly organized and very complex. The water and the different types of weak interactions among the macromolecules make the interpretation of thermal events very difficult. This book includes examples how to handle such problems. The Nature of Biological Systems as Revealed by Thermal Methods
is unique in that it: The book is an invaluable resource for anyone interested in thermodynamics, including practising professionals applying thermal methods to biological problems; researchers and graduate students beginning work using thermal methods; and specialists of thermal analysis starting work on biological problems. In addition, this book will be a useful resource for libraries and institutes as the only book covering quantitative thermal analysis of biological systems.
This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.
Discontinuity in Nonlinear Physical Systems explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed.
Exploiting powerful techniques from physics and mathematics, this book studies animal movement in ecology, with a focus on epidemic spread. Pulmonary syndrome is not only feared in epidemics of recent times, such as COVID-19, but is also characteristic of epidemics studied earlier such as Hantavirus. The Hantavirus is one of the book's central topics. Correlations between epidemic outbreaks and precipitation events like El Nino are analyzed and spatial reservoirs of infection in off-period of the epidemic, known as refugia, are studied. Predicted traveling waves of infection are successfully compared to field observations. Territoriality in scent-marking animals is presented, with parallels drawn with the theory of melting. The flocking and herding of birds and mammals are described in terms of collective excitations. For scientists interested in movement ecology and epidemic spread, this book provides effective solutions to long-standing problems.
This book introduces selected recent findings on the analysis and control of dynamical behaviors for coupled reaction-diffusion neural networks. It presents novel research ideas and essential definitions concerning coupled reaction-diffusion neural networks, such as passivity, adaptive coupling, spatial diffusion coupling, and the relationship between synchronization and output strict passivity. Further, it gathers research results previously published in many flagship journals, presenting them in a unified form. As such, the book will be of interest to all university researchers and graduate students in Engineering and Mathematics who wish to study the dynamical behaviors of coupled reaction-diffusion neural networks.
This book uses new ideas and language for understanding how self-organization and complexity trend toward increased efficiency. Different measures for efficiency from multiple disciplines are used to probe the ones that provide the most insight. One major goal is to seek a common framework to trace the increase of efficiency as a measure of the level of organization and evolutionary stage of a complex system. The chapters come from a satellite meeting hosted at the Conference on Complex Systems, in Cancun, 2017. The contributions will be peer-reviewed and contributors from outside the conference will be invited to submit chapters to ensure full coverage of the topics. This text will appeal to students and researchers working on complex systems and efficiency.
This book presents thermodynamic data on oxides in the system MgO-FeO-Fe2O3-Al2O3-SiO2. These data are produced by a process of assessment that involves the integration of thermochemical (calorimetric) and phase equilibrium data. The latter have been selected from a number of publications in high-pressure research conducted at pressures and temperatures in the range of 1 bar to several Giga Pascals and 300 to 2500 K respectively. A unique feature of the database is that the assessment involves not only the thermodynamic data on pure end member species, but also the data on multicomponent solutions. Since the solution description follows the format used in the popular thermodynamic computational packages such as FACTSAGE, ChemSage and Thermocalc, the database is easy to incorporate in the currently used databases in these packages. The database is highly useful to those working in the field of metallurgy (e.g. slags) and ceramics. It is essential for all those who do thermodynamic modeling of the terrestrial planetary interiors.
Intended for beginning graduate students or advanced undergraduates, this text covers the statistical basis of thermodynamics, including examples from solid-state physics. It also treats some topics of more recent interest such as phase transitions and non-equilibrium phenomena. The presentation introducesmodern concepts, such as the thermodynamic limit and equivalence of Gibbs ensembles, and uses simple models (ideal gas, Einstein solid, simple paramagnet) and many examples to make the mathematical ideas clear. Frequently used mathematical methods are discussed in detail and reviews in an appendix. The book begins with a review of statistical methods and classical thermodynamics, making it suitable for students from a variety of backgrounds. Statistical mechanics is formulated in the microcanonical ensemble; some simple arguments and many examples are used to construct th canonical and grand-canonical ensembles. The discussion of quantum statistical mechanics includes Bose and Fermi ideal gases, the Bose-Einstein condensation, blackbody radiation, phonons and magnons. The van der Waals and Curoe-Weiss phenomenological models are used to illustrate the classical theories of phase transitions and critical phenomena; modern developments are intorducted with discussions of the Ising model, scaling theory, and renormalization-group ideas. The book concludes withy two chapters on nonequilibrium phenomena: one using Boltzmann's kinetic approach, and the other based on stochastic methods. Exercises at the end of each chapter are an integral part of the course, clarifying and extending topics discussed in the text. Hints and solutions can be found on the author's web site.
This book explains the modelling and simulation of thermal power plants, and introduces readers to the equations needed to model a wide range of industrial energy processes. Also featuring a wealth of illustrative, real-world examples, it covers all types of power plants, including nuclear, fossil-fuel, solar and biomass. The book is based on the authors' expertise and experience in the theory of power plant modelling and simulation, developed over many years of service with EDF. In more than forty examples, they demonstrate the component elements involved in a broad range of energy production systems, with detailed test cases for each chemical, thermodynamic and thermo-hydraulic model. Each of the test cases includes the following information: * component description and parameterization data; * modelling hypotheses and simulation results; * fundamental equations and correlations, with their validity domains; * model validation, and in some cases, experimental validation; and * single-phase flow and two-phase flow modelling equations, which cover all water and steam phases. A practical volume that is intended for a broad readership, from students and researchers, to professional engineers, this book offers the ideal handbook for the modelling and simulation of thermal power plants. It is also a valuable aid in understanding the physical and chemical phenomena that govern the operation of power plants and energy processes.
This book presents a comprehensive account of the renormalization-group (RG) method and its extension, the doublet scheme, in a geometrical point of view. It extract long timescale macroscopic/mesoscopic dynamics from microscopic equations in an intuitively understandable way rather than in a mathematically rigorous manner and introduces readers to a mathematically elementary, but useful and widely applicable technique for analyzing asymptotic solutions in mathematical models of nature. The book begins with the basic notion of the RG theory, including its connection with the separation of scales. Then it formulates the RG method as a construction method of envelopes of the naive perturbative solutions containing secular terms, and then demonstrates the formulation in various types of evolution equations. Lastly, it describes successful physical examples, such as stochastic and transport phenomena including second-order relativistic as well as nonrelativistic fluid dynamics with causality and transport phenomena in cold atoms, with extensive numerical expositions of transport coefficients and relaxation times. Requiring only an undergraduate-level understanding of physics and mathematics, the book clearly describes the notions and mathematical techniques with a wealth of examples. It is a unique and can be enlightening resource for readers who feel mystified by renormalization theory in quantum field theory.
This unique book is at the nexus of modern software programming practices and electrochemical process engineering. It is the authoritative text on developing open source software for many applications, including: * fuel cells; * electrolyzers; and * batteries. Written by experts in the field in the open source computational fluid dynamics (CFD) code suite OpenFOAM, this book is intended for process engineering professionals developing practical electrochemical designs for industry, as well as researchers focused on finding tomorrow's answers today. The book covers everything from micro-scale to cell-scale to stack-scale models, with numerous illustrations and programming examples. Starting from a clear explanation of electrochemical processes and simple illustrative examples, the book progresses in complexity through a range of diverse applications. After reading this book, the reader is able to take command and control of model development as an expert. The book is aimed at all engineers and scientists with basic knowledge of calculus and programming in C++.
This is a textbook on thermodynamics of materials for junior/senior undergraduate students and first-year graduate students as well as a reference book for researchers who would like to refresh their understanding of thermodynamics. The textbook employs a plain language to explain the thermodynamic concepts and quantities. It embraces the mathematical beauty and rigor of Gibbs thermodynamics through the fundamental equation of thermodynamics from which all thermodynamic properties of a material can be derived. However, a reader with basic first-year undergraduate calculus skills will be able to get through the book without difficulty. One unique feature of this textbook is the descriptions of the step-by-step procedures for computing all the thermodynamic properties from the fundamental equation of thermodynamics and all the thermodynamic energies from a set of common, experimentally measurable thermodynamic properties, supplemented with ample numerical examples. Another unique feature of this textbook is its emphasis on the concept of chemical potential and its applications to phase equilibria in single component systems and binary solutions, chemical reaction equilibria, and lattice and electronic defects in crystals. The concept of chemical potential is introduced at the very beginning of the book together with temperature and pressure. It avoids or minimizes the use of terms such as molar Gibbs free energy, partial molar Gibbs free energy, or Gibbs potential because molar Gibbs free energy or partial molar Gibbs free energy is precisely the chemical potential of a material or a component. It is the chemical potential that determines the stability of chemical species, compounds, and phases and their tendency to chemically react to form new species, transform to new physical state, and migrate from one spatial location to another. Therefore, it is the chemical potential differences or gradients that drive essentially all materials processes of interest. A reader after finishing reading the book is expected to not only achieve a high-level fundamental understanding of thermodynamics but also acquire the analytical skills of applying thermodynamics to determining materials equilibrium and driving forces for materials processes.
This book describes a comprehensive approach to applying systems science formally to the deep analysis of a wide variety of complex systems. Detailed 'how-to' examples of the three phases (analysis-modeling-design) of systems science are applied to systems of various types (machines, organic (e.g. ecosystem), and supra-organic (e.g. business organizations and government). The complexity of the global system has reached proportions that seriously challenge our abilities to understand the consequences of our use of technology, modification of natural ecosystems, or even how to govern ourselves. For this reason, complex mathematics is eschewed when simpler structures will suffice, allowing the widest possible audience to apply and benefit from the available tools and concepts of systems science in their own work. The book shows, in detail, how to functionally and structurally deconstruct complex systems using a fundamental language of systems. It shows how to capture the discovered details in a structured knowledge base from which abstract models can be derived for simulation. The knowledge base is also shown to be a basis for generating system design specifications for human-built artifacts, or policy recommendations/policy mechanisms for socio-economic-ecological systems management. The book builds on principles and methods found in the authors' textbook Principles of Systems Science (co-authored with Michael Kalton), but without prerequisites. It will appeal to a broad audience that deals with complex systems every day, from design engineers to economic and ecological systems managers and policymakers.
One of the questions about which humanity has often wondered is the arrow of time. Why does temporal evolution seem irreversible? That is, we often see objects break into pieces, but we never see them reconstitute spontaneously. This observation was first put into scientific terms by the so-called second law of thermodynamics: entropy never decreases. However, this law does not explain the origin of irreversibly; it only quantifies it. Kinetic theory gives a consistent explanation of irreversibility based on a statistical description of the motion of electrons, atoms, and molecules. The concepts of kinetic theory have been applied to innumerable situations including electronics, the production of particles in the early universe, the dynamics of astrophysical plasmas, quantum gases or the motion of small microorganisms in water, with excellent quantitative agreement. This book presents the fundamentals of kinetic theory, considering classical paradigmatic examples as well as modern applications. It covers the most important systems where kinetic theory is applied, explaining their major features. The text is balanced between exploring the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed.
This textbook for graduates and advanced undergraduates in physics and physical chemistry covers the major areas of statistical mechanics and concludes with the level of current research. It begins with the fundamental ideas of averages and ensembles, focusing on classical systems described by continuous variables such as position and momentum, and using the ideal gas as an example. It then turns to quantum systems, beginning with diatomic molecules and working up through blackbody radiation and chemical equilibria. The discussion of equilibrium properties of systems of interacting particles includes such techniques as cluster expansions and distribution functions and uses non-ideal gases, liquids, and solutions. Dynamic behavior -- treated here more extensively than in other texts -- is discussed from the point of view of correlation functions. The text concludes with the problem of diffusion in a suspension of interacting hard spheres and what can be learned about such a system from scattered light. Intended for a one-semester course, the text includes several "asides" on topics usually omitted from introductory courses, as well as numerous exercises.
This book presents sensemaking strategies to support security planning and design. Threats to security are becoming complex and multifaceted and increasingly challenging traditional notions of security. The security landscape is characterized as 'messes' and 'wicked problems' that proliferate in this age of complexity. Designing security solutions in the face of interconnectedness, volatility and uncertainty, we run the risk of providing the right answer to the wrong problem thereby resulting in unintended consequences. Sensemaking is the activity that enables us to turn the ongoing complexity of the world into a "situation that is comprehended explicitly in words and that serves as a springboard into action" (Weick, Sutcliffe, Obstfeld, 2005). It is about creating an emerging picture of our world through data collection, analysis, action, and reflection. The importance of sensemaking to security is that it enables us to plan, design and act when the world as we knew it seems to have shifted. Leveraging the relevant theoretical grounding and thought leadership in sensemaking, key examples are provided, thereby illustrating how sensemaking strategies can support security planning and design. This is a critical analytical and leadership requirement in this age of volatility, uncertainty, complexity and ambiguity that characterizes the security landscape. This book is useful for academics, graduate students in global security, and government and security planning practitioners.
This book addresses the COVID-19 pandemic from a quantitative perspective based on mathematical models and methods largely used in nonlinear physics. It aims to study COVID-19 epidemics in countries and SARS-CoV-2 infections in individuals from the nonlinear physics perspective and to model explicitly COVID-19 data observed in countries and virus load data observed in COVID-19 patients. The first part of this book provides a short technical introduction into amplitude spaces given by eigenvalues, eigenvectors, and amplitudes.In the second part of the book, mathematical models of epidemiology are introduced such as the SIR and SEIR models and applied to describe COVID-19 epidemics in various countries around the world. In the third part of the book, virus dynamics models are considered and applied to infections in COVID-19 patients. This book is written for researchers, modellers, and graduate students in physics and medicine, epidemiology and virology, biology, applied mathematics, and computer sciences. This book identifies the relevant mechanisms behind past COVID-19 outbreaks and in doing so can help efforts to stop future COVID-19 outbreaks and other epidemic outbreaks. Likewise, this book points out the physics underlying SARS-CoV-2 infections in patients and in doing so supports a physics perspective to address human immune reactions to SARS-CoV-2 infections and similar virus infections. |
You may like...
Renewable Energy - Physics, Engineering…
Bent Sorensen (Sorensen)
Hardcover
R2,329
Discovery Miles 23 290
Energy Policies in the European Union…
P.J.J. Welfens, B. Meyer, …
Hardcover
R1,490
Discovery Miles 14 900
Production and Purification of…
Yun Hang Hu, Xiaoliang Ma, …
Hardcover
R5,467
Discovery Miles 54 670
Proceedings of PURPLE MOUNTAIN FORUM…
Yusheng Xue, Yuping Zheng, …
Hardcover
R7,189
Discovery Miles 71 890
Biofuels for a More Sustainable Future…
Jingzheng Ren, Antonio Scipioni, …
Paperback
R3,348
Discovery Miles 33 480
Energy Developments in the Middle East
Anthony H. Cordesman
Hardcover
The Law for Energy Prosumers - The Case…
Daniela Aguilar Abaunza
Hardcover
R4,036
Discovery Miles 40 360
|