![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
In this volume we continue the logical development of the work begun in Volume I, and the equilibrium theory now becomes a very special case of the exposition presented here. Once a departure is made from equilibrium, however, the problems become deeper and more subtle-and unlike the equilibrium theory, many aspects of nonequilibrium phenomena remain poorly understood. For over a century a great deal of effort has been expended on the attempt to develop a comprehensive and sensible description of nonequilibrium phenomena and irreversible processes. What has emerged is a hodgepodge of ad hoc constructs that do little to provide either a firm foundation, or a systematic means for proceeding to higher levels of understanding with respect to ever more complicated examples of nonequilibria. Although one should rightfully consider this situation shameful, the amount of effort invested testifies to the degree of difficulty of the problems. In Volume I it was emphasized strongly that the traditional exposition of equilibrium theory lacked a certain cogency which tended to impede progress with extending those considerations to more complex nonequilibrium problems. The reasons for this were adduced to be an unfortunate reliance on ergodicity and the notions of kinetic theory, but in the long run little harm was done regarding the treatment of equilibrium problems. On the nonequilibrium level the potential for disaster increases enormously, as becomes evident already in Chapter 1.
This thesis presents pioneering experimental and numerical studies on three aspects of the combustion characteristics of lean premixed syngas/air flames, namely the laminar flame speed, extinction limit and flammability limit. It illustrates a new extinction exponent concept, which enriches the combustion theory. Above all, the book provides the following: a) a series of carefully measured data and theoretical analyses to reveal the intrinsic mechanisms of the fuel composition effect on the propagation and extinction of lean syngas/air flames; b) a mixing model and correlation to predict the laminar flame speed of multi-component syngas fuels, intended for engineering computations; c) a new "extinction exponent" concept to describe the critical effects of chemical kinetics on the extinction of lean premixed syngas/air flames; and d) the effects and mechanism of the dilution of incombustible components on lean premixed syngas/air flames and the preferential importance among the thermal, chemical and diffusion effects.
This two-volume work provides a comprehensive study of the statistical mechanics of lattice models. It introduces readers to the main topics and the theory of phase transitions, building on a firm mathematical and physical basis. Volume 1 contains an account of mean-field and cluster variation methods successfully used in many applications in solid-state physics and theoretical chemistry, as well as an account of exact results for the Ising and six-vertex models and those derivable by transformation methods.
In the present volume numerous descriptions of Ram accelerators are presented. These descriptions provide good overview on the progress made and the present state of the Ram accelerator technology worldwide. In addition, articles describing light gas gun, ballistic range including a chapter dealing with shock waves in solids are given. Along with the technical description of considered facilities, samples of obtained results are also included. Each chapter is written by an expert in the described topic providing a comprehensive description of the discussed phenomena.
One common characteristics of a complex system is its ability to
withstand major disturbances and the capacity to rebuild itself.
Understanding how such systems demonstrate resilience by absorbing
or recovering from major external perturbations requires both
quantitative foundations and a multidisciplinary view on the
topic.
In this thesis, the author describes the development of a software framework to systematically construct a particular class of weakly coupled free fermionic heterotic string models, dubbed gauge models. In their purest form, these models are maximally supersymmetric (N = 4), and thus only contain superpartners in their matter sector. This feature makes their systematic construction particularly efficient, and they are thus useful in their simplicity. The thesis first provides a brisk introduction to heterotic strings and the spin-structure construction of free fermionic models. Three systematic surveys are then presented, and it is conjectured that these surveys are exhaustive modulo redundancies. Finally, the author presents a collection of metaheuristic algorithms for searching the landscape for models with a user-specified spectrum of phenomenological properties, e.g. gauge group and number of spacetime supersymmetries. Such algorithms provide the groundwork for extended generic free fermionic surveys.
Most of the interesting and difficult problems in statistical mechanics arise when the constituent particles of the system interact with each other with pair or multipartiele energies. The types of behaviour which occur in systems because of these interactions are referred to as cooperative phenomena giving rise in many cases to phase transitions. This book and its companion volume (Lavis and Bell 1999, referred to in the text simply as Volume 1) are princi pally concerned with phase transitions in lattice systems. Due mainly to the insights gained from scaling theory and renormalization group methods, this subject has developed very rapidly over the last thirty years. ' In our choice of topics we have tried to present a good range of fundamental theory and of applications, some of which reflect our own interests. A broad division of material can be made between exact results and ap proximation methods. We have found it appropriate to inelude some of our discussion of exact results in this volume and some in Volume 1. Apart from this much of the discussion in Volume 1 is concerned with mean-field theory. Although this is known not to give reliable results elose to a critical region, it often provides a good qualitative picture for phase diagrams as a whole. For complicated systems some kind of mean-field method is often the only tractable method available. In this volume our main concern is with scaling theory, algebraic methods and the renormalization group."
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology-and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This volume concentrates on reviewing the most relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. The book covers the theory as applied to robotics, electronic and communication engineering (for example chaos synchronization and cryptography) as well as to civil and mechanical engineering, where its use in damage monitoring and control is explored). Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a 'recipe book' full of tried and tested, successful engineering applications
This volume provides a compact presentation of modern statistical physics at an advanced level, from the foundations of statistical mechanics to the main modern applications of statistical physics. Special attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems. This second, revised edition is expanded with biographical notes contextualizing the main results in statistical physics.
This book studies the collision, coalescence and deposition of nanoparticles in stagnation flames. With the help of synthesis experiments, in-situ laser diagnostics and molecular dynamics simulations, it investigates the growth of nanoparticles in flames and their deposition in boundary layers at a macroscopic flow field scale, as well as particle and molecular scale issues such as the interaction force between particles, how the collision rate is enhanced by attractive forces, and how the nano-scale coalescence process is influenced by the high surface curvature - all of which are crucial to understanding nanoparticle transport phenomena at high temperatures. The book also reports on a novel in-situ laser diagnostics phenomenon called phase-selective laser-induced breakdown spectroscopy and related applications for tracing gas-to-particle transitions and measuring local particle volume fractions in nano-aerosols.
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
This book is based on the premise that the entropy concept, a fundamental element of probability theory as logic, governs all of thermal physics, both equilibrium and nonequilibrium. The variational algorithm of J. Willard Gibbs, dating from the 19th Century and extended considerably over the following 100 years, is shown to be the governing feature over the entire range of thermal phenomena, such that only the nature of the macroscopic constraints changes. Beginning with a short history of the development of the entropy concept by Rudolph Clausius and his predecessors, along with the formalization of classical thermodynamics by Gibbs, the first part of the book describes the quest to uncover the meaning of thermodynamic entropy, which leads to its relationship with probability and information as first envisioned by Ludwig Boltzmann. Recognition of entropy first of all as a fundamental element of probability theory in mid-twentieth Century led to deep insights into both statistical mechanics and thermodynamics, the details of which are presented here in several chapters. The later chapters extend these ideas to nonequilibrium statistical mechanics in an unambiguous manner, thereby exhibiting the overall unifying role of the entropy.
This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer simulation in a fluid at supercritical pressure and (iii) a periodic quantum-mechanical model for homogeneous vapor nucleation in a fluid with respect to nanoscale effects.
This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. Mat Lab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications.
This book consists of peer-reviewed articles and reviews presented as lectures at the Sixth International Symposium on Thermal Engineering and Sciences for Cold Regions in Darmstadt, Germany. It addresses all relevant aspects of thermal physics and engineering in cold regions, such as the Arctic regions. These environments present many unique freezing and melting phenomena and the relevant heat and mass transfer processes are of basic importance with respect to both the technological applications and the natural context in which they occur. Intended for physicists, engineers, geoscientists, climatologists and cryologists alike, these proceedings cover topics such as: ice formation and decay, heat conduction with phase change, convection with freezing and melting, thermal properties at low temperature, frost heave and permafrost, climate impact in cold regions, thermal design of structures, bio-engineering in cold regions, and many more.
Thermodiffusion describes the coupling between a temperature gradient and a resulting mass flux. Traditionally, the focus has been on simple fluids, and it is now extending to more complex systems such as electrolytes, polymers, colloidal dispersions and magnetic fluids. This book widens the scope even further by including applications in ionic solids. Written as a set of tutorial reviews, it will be useful to experts, nonspecialist researchers and postgraduate students alike.
Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and their students.
This superb text describes a novel and powerful method for allowing
design engineers to firstly model a linear problem in heat
conduction, then build a solution in an explicit form and finally
obtain a numerical solution. It constitutes a modelling and
calculation tool based on a very efficient and systemic
methodological approach.
This book presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions. Within the Green's function formalism, the basic sets of equations for these diverse systems are similar, and approximations developed in one field can be adapted to another field. The central object is the self-energy which includes all non-trivial aspects of the system dynamics. The focus is therefore on microscopic processes starting from elementary principles for classical gases and the complementary picture of a single quantum particle in a random potential. This provides an intuitive picture of the interaction of a particle with the medium formed by other particles, on which the Green's function is built on.
"Great progress has been made in electrical science, chiefly in Germany, by cultivators of the theory of action at a distance. The valuable electrical measurements of W. Weber are interpreted by him according to this theory, and the electromagnetic speculation which was originated by Gauss, and carried on by Weber, Riemann, F. and C. Neumann, Lorenz, etc. , is founded on the theory of action at a distance, but depending either directly on the relative velocity of the particles, or on the gradual propagation of something, whether potential or force, from the one particle to the other. The great success which these eminent men have attained in the application of mathematics to electrical phenomena, gives, as is natural, additional weight to their theoretical speculations, so that those who, as students of electricity, turn to them as the greatest authorities in mathematical electricity, would probably imbibe, along with their mathematical methods, their physical hypothesis. These physical hypotheses, however, are entirely alien from the way of looking at things which I adopt, and one object which I have in view is that some of those who wish to study electricity may, by reading this treatise, come to see that there is another way of treating the subject, which is no less fitted to explain the phenomena, and which, though in some parts it may appear less definite, corresponds, as I think, more faithfuHy with our actual knowledge, both in what it affirms and in what it leaves undecided.
This book presents recent findings on the global existence, the uniqueness and the large-time behavior of global solutions of thermo(vis)coelastic systems and related models arising in physics, mechanics and materials science such as thermoviscoelastic systems, thermoelastic systems of types II and III, as well as Timoshenko-type systems with past history. Part of the book is based on the research conducted by the authors and their collaborators in recent years. The book will benefit interested beginners in the field and experts alike.
This is a collection of articles written by mathematicians and physicists, designed to describe the state of the art in climate models with stochastic input. Mathematicians will benefit from a survey of simple models, while physicists will encounter mathematically relevant techniques at work.
Models for the mechanical behavior of porous media introduced more than 50 years ago are still relied upon today, but more recent work shows that, in some cases, they may violate the laws of thermodynamics. In The Thermophysics of Porous Media, the author shows that physical consistency requires a unique description of dynamic processes that involve porous media, and that new dynamic variables-porosity, saturation, and megascale concentration-naturally enter into the large-scale description of porous media. The new degrees of freedom revealed in this study predict new dynamic processes that are not associated with compressional motions.
|
You may like...
The New Testament I and II, 15/16 - Part…
Boniface Augustine, Augustine
Paperback
|