Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
This new edition of College Physics Essentials provides a streamlined update of a major textbook for algebra-based physics. The first volume covers topics such as mechanics, heat, and thermodynamics. The second volume covers electricity, atomic, nuclear, and quantum physics. The authors provide emphasis on worked examples together with expanded problem sets that build from conceptual understanding to numerical solutions and real-world applications to increase reader engagement. Including over 900 images throughout the two volumes, this textbook is highly recommended for students seeking a basic understanding of key physics concepts and how to apply them to real problems.
This book addresses a special topic in the field of nonlinear dynamical systems, develops a new research direction of surface chaos and surface bifurcation. It provides a clear watershed for original nonlinear chaos and bifurcation research. The novel content of this book makes nonlinear system research more systematical and personalized. This book introduces the chaos and bifurcation behavior of surface dynamics in the sense of Li Yorke, the basic properties, Lyapunov exponent and Feigenbaum constant of nonlinear behavior of surface, and obtained the wave behavior of chaotic process in surface motion, the control of surface chaos and bifurcation, and the wide application of surface chaos in engineering technology. Through this book, readers can obtain more abundant and novel contents about surface chaos and surface bifurcation than the existing mixed fitting bifurcation of plane curve and space curve, which can also expand the realm and vision of research.
The sixth edition of this highly successful textbook provides a detailed introduction to Monte Carlo simulation in statistical physics, which deals with the computer simulation of many-body systems in condensed matter physics and related fields of physics and beyond (traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, these powerful simulation methods calculate probability distributions, making it possible to estimate the thermodynamic properties of various systems. The book describes the theoretical background of these methods, enabling newcomers to perform such simulations and to analyse their results. It features a modular structure, with two chapters providing a basic pedagogic introduction plus exercises suitable for university courses; the remaining chapters cover major recent developments in the field. This edition has been updated with two new chapters dealing with recently developed powerful special algorithms and with finite size scaling tools for the study of interfacial phenomena, which are important for nanoscience. Previous editions have been highly praised and widely used by both students and advanced researchers.
How is free will possible in the light of the physical and chemical underpinnings of brain activity and recent neurobiological experiments? How can the emergence of complexity in hierarchical systems such as the brain, based at the lower levels in physical interactions, lead to something like genuine free will? The nature of our understanding of free will in the light of present-day neuroscience is becoming increasingly important because of remarkable discoveries on the topic being made by neuroscientists at the present time, on the one hand, and its crucial importance for the way we view ourselves as human beings, on the other. A key tool in understanding how free will may arise in this context is the idea of downward causation in complex systems, happening coterminously with bottom up causation, to form an integral whole. Top-down causation is usually neglected, and is therefore emphasized in the other part of the book 's title. The concept is explored in depth, as are the ethical and legal implications of our understanding of free will. This book arises out of a workshop held in California in April of 2007, which was chaired by Dr. Christof Koch. It was unusual in terms of the breadth of people involved: they included physicists, neuroscientists, psychiatrists, philosophers, and theologians. This enabled the meeting, and hence the resulting book, to attain a rather broader perspective on the issue than is often attained at academic symposia. The book includes contributions by Sarah-Jayne Blakemore, George F. R. Ellis, Christopher D. Frith, Mark Hallett, David Hodgson, Owen D. Jones, Alicia Juarrero, J. A. Scott Kelso, Christof Koch, Hans K ng, Hakwan C. Lau, Dean Mobbs, Nancey Murphy, William Newsome, Timothy O Connor, Sean A.. Spence, and Evan Thompson.
This book presents new techniques and methods for distributed control and optimization of networked microgrids. Distributed consensus issues under network-based and event-triggered mechanisms are first addressed in a multi-agent system framework, which can explicitly characterize the relationship between communication resources and the control performance. Then, considering the effects of network uncertainties, multi-agent system-based distributed schemes are tailored to solve the fundamental issues of networked microgrids such as distributed frequency regulation, voltage regulation, active power sharing/load sharing, and energy management. The monograph will contribute to stimulating extensive interest of researchers in electrical and control fields.
Proceedings of the NATO Advanced Study Institute on Propagation of Correlations in Constrained Systems, Cargese, Corsica, France, July 2-14, 1990"
Chemical Thermodynamics: Principles and Applications presents a
thorough development of the principles of thermodynamics--an
old
Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles and attempts to explain these in simple terms, supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Einstein condensation. In this latest edition, apart from a general revision, the topic of thermal radiation has been expanded with a new section on black bodies and an additional chapter on black holes. Other additions are more examples with applications of statistical mechanics in solid state physics and superconductivity. Throughout the presentation, the introduction carries almost all details for calculations.
- It provides a rigorous mathematical and physical basis to techniques that are often introduced on empirical basis - While the book covers a broad range of techniques, it starts at a basic theoretical level. This gives the book a strong foundation and makes it accessible to students from various backgrounds. - Has a computational focus unlike many competing titles
The interplay between synchronization and spatio-temporal pattern formation is central for a broad variety of phenomena in nature, such as the coordinated contraction of heart tissue, associative memory and learning in neural networks, and pathological synchronization during Parkinson disease or epilepsy. In this thesis, three open puzzles of fundametal research in Nonlinear Dynamics are tackled: How does spatial confinement affect the dynamics of three-dimensional vortex rings? What role do permutation symmetries play in the spreading of excitation waves on networks? Does the spiral wave chimera state really exist? All investigations combine a theoretical approach and experimental verification, which exploit an oscillatory chemical reaction. A novel experimental setup is developed that allows for studying networks with N > 1000 neuromorphic relaxation oscillators. It facilitates the free choice of network topology, coupling function as well as its strength, range and time delay, which can even be chosen as time-dependent. These experimental capabilities open the door to a broad range of future experimental inquiries into pattern formation and synchronization on large networks, which were previously out of reach.
Computer and communication networks are among society's most important infrastructures. The internet, in particular, is a giant global network of networks with central control or administration. It is a paradigm of a complex system, where complexity may arise from different sources: topological structure, network evolution, connection and node diversity, and /or dynamical evolution. This is the first book entirely devoted to the new and emerging field of nonlinear dynamics of TCP/IP networks. It addresses both scientists and engineers working in the general field of communication networks.
This twelfth volume in the Poincare Seminar Series presents a complete and interdisciplinary perspective on the concept of Chaos, both in classical mechanics in its deterministic version, and in quantum mechanics. This book expounds some of the most wide ranging questions in science, from uncovering the fingerprints of classical chaotic dynamics in quantum systems, to predicting the fate of our own planetary system. Its seven articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include a complete description by the mathematician E. Ghys of the paradigmatic Lorenz attractor, and of the famed Lorenz butterfly effect as it is understood today, illuminating the fundamental mathematical issues at play with deterministic chaos; a detailed account by the experimentalist S. Fauve of the masterpiece experiment, the von Karman Sodium or VKS experiment, which established in 2007 the spontaneous generation of a magnetic field in a strongly turbulent flow, including its reversal, a model of Earth's magnetic field; a simple toy model by the theorist U. Smilansky - the discrete Laplacian on finite d-regular expander graphs - which allows one to grasp the essential ingredients of quantum chaos, including its fundamental link to random matrix theory; a review by the mathematical physicists P. Bourgade and J.P. Keating, which illuminates the fascinating connection between the distribution of zeros of the Riemann -function and the statistics of eigenvalues of random unitary matrices, which could ultimately provide a spectral interpretation for the zeros of the -function, thus a proof of the celebrated Riemann Hypothesis itself; an article by a pioneer of experimental quantum chaos, H-J. Stoeckmann, who shows in detail how experiments on the propagation of microwaves in 2D or 3D chaotic cavities beautifully verify theoretical predictions; a thorough presentation by the mathematical physicist S. Nonnenmacher of the "anatomy" of the eigenmodes of quantized chaotic systems, namely of their macroscopic localization properties, as ruled by the Quantum Ergodic theorem, and of the deep mathematical challenge posed by their fluctuations at the microscopic scale; a review, both historical and scientific, by the astronomer J. Laskar on the stability, hence the fate, of the chaotic Solar planetary system we live in, a subject where he made groundbreaking contributions, including the probabilistic estimate of possible planetary collisions. This book should be of broad general interest to both physicists and mathematicians.
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
Mathematical Physics for Nuclear Experiments presents an accessible introduction to the mathematical derivations of key equations used in describing and analysing results of typical nuclear physics experiments. Instead of merely showing results and citing texts, crucial equations in nuclear physics such as the Bohr's classical formula, Bethe's quantum mechanical formula for energy loss, Poisson, Gaussian and Maxwellian distributions for radioactive decay, and the Fermi function for beta spectrum analysis, among many more, are presented with the mathematical bases of their derivation and with their physical utility. This approach provides readers with a greater connection between the theoretical and experimental sides of nuclear physics. The book also presents connections between well-established results and ongoing research. It also contains figures and tables showing results from the author's experiments and those of his students to demonstrate experimental outcomes. This is a valuable guide for advanced undergraduates and early graduates studying nuclear instruments and methods, medical and health physics courses as well as experimental particle physics courses. Key features Contains over 500 equations connecting theory with experiments. Presents over 80 examples showing physical intuition and illustrating concepts. Includes 80 exercises, with solutions, showing applications in nuclear and medical physics.
Mathematical Physics for Nuclear Experiments presents an accessible introduction to the mathematical derivations of key equations used in describing and analysing results of typical nuclear physics experiments. Instead of merely showing results and citing texts, crucial equations in nuclear physics such as the Bohr's classical formula, Bethe's quantum mechanical formula for energy loss, Poisson, Gaussian and Maxwellian distributions for radioactive decay, and the Fermi function for beta spectrum analysis, among many more, are presented with the mathematical bases of their derivation and with their physical utility. This approach provides readers with a greater connection between the theoretical and experimental sides of nuclear physics. The book also presents connections between well-established results and ongoing research. It also contains figures and tables showing results from the author's experiments and those of his students to demonstrate experimental outcomes. This is a valuable guide for advanced undergraduates and early graduates studying nuclear instruments and methods, medical and health physics courses as well as experimental particle physics courses. Key features Contains over 500 equations connecting theory with experiments. Presents over 80 examples showing physical intuition and illustrating concepts. Includes 80 exercises, with solutions, showing applications in nuclear and medical physics.
This volume shows that the emergence of computational social science (CSS) is an endogenous response to problems from within the social sciences and not exogeneous. The three parts of the volume address various pathways along which CSS has been developing from and interacting with existing research frameworks. The first part exemplifies how new theoretical models and approaches on which CSS research is based arise from theories of social science. The second part is about methodological advances facilitated by CSS-related techniques. The third part illustrates the contribution of CSS to traditional social science topics, further attesting to the embedded nature of CSS. The expected readership of the volume includes researchers with a traditional social science background who wish to approach CSS, experts in CSS looking for substantive links to more traditional social science theories, methods and topics, and finally, students working in both fields.
The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
Based on the recent NATO Advanced Study Institute "Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems", this state of the art textbook, written by internationally renowned experts, provides an invaluable reference volume for all students and researchers in gravitational n-body systems. The contributions are especially designed to give a systematic development from the fundamental mathematics which underpin modern studies of ordered and chaotic behaviour in n-body dynamics to their application to real motion in planetary systems. This volume presents an up-to-date synoptic view of the subject.
- A brief and accessible introduction to a complex topic - Contains a thorough treatment of the motions of heavenly bodies than conventional elementary mechanics texts. - Provides a wealth of end-of-chapter exercises to test understanding
This book offers an informal, easy-to-understand account of topics in modern physics and mathematics. The focus is, in particular, on statistical mechanics, soft matter, probability, chaos, complexity, and models, as well as their interplay. The book features 28 key entries and it is carefully structured so as to allow readers to pursue different paths that reflect their interests and priorities, thereby avoiding an excessively systematic presentation that might stifle interest. While the majority of the entries concern specific topics and arguments, some relate to important protagonists of science, highlighting and explaining their contributions. Advanced mathematics is avoided, and formulas are introduced in only a few cases. The book is a user-friendly tool that nevertheless avoids scientific compromise. It is of interest to all who seek a better grasp of the world that surrounds us and of the ideas that have changed our perceptions.
This book is devoted to the problems of oxidation chemical reactions and addresses bimodal reaction sequences. Chemical reactions of oxidation, occurring under certain conditions and in multicomponent systems are complex processes. The process of the oxidation essentially changes in the presence and contact of the solid substances with reactants. The role of solid substances and the appearance of this phenomenon in oxidation reaction are discussed. The reader will understand the "driving forces" of this phenomenon and apply it in practice. Written for chemists, physicists, biologists and engineers working in the domain of oxidation reactions. Key Selling Features: Covers the historical background, modern state of the art, and perspectives in investigations of the coupling between heterogeneous and homogeneous reactions Discusses the feasible pathways of the coupling of heterogeneous and homogeneous reactions in oxidation in man-made and natural chemical systems Addresses the abundance, peculiarities and mechanisms of the bimodal reaction sequences in oxidation with dioxygen in recent decades Discusses the existence of the bimodal reaction sequences in chemical systems investigations in atmospheric chemistry and heterogeneous photocatalysis Presented in a simple concise style, accessible for both specialists and non-specialists
This volume is a compilation of carefully selected questions at the PhD qualifying exam level, including many actual questions from Columbia University, University of Chicago, MIT, State University of New York at Buffalo, Princeton University, University of Wisconsin and the University of California at Berkeley over a twenty-year period. Topics covered in this book include the laws of thermodynamics, phase changes, Maxwell-Boltzmann statistics and kinetic theory of gases.This latest edition has been updated with more problems and solutions and the original problems have also been modernized, excluding outdated questions and emphasizing those that rely on calculations. The problems range from fundamental to advanced in a wide range of topics on thermodynamics and statistical physics, easily enhancing the student's knowledge through workable exercises. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will challenge the student's capacity on finding the solutions.
This volume is a compilation of carefully selected questions at the PhD qualifying exam level, including many actual questions from Columbia University, University of Chicago, MIT, State University of New York at Buffalo, Princeton University, University of Wisconsin and the University of California at Berkeley over a twenty-year period. Topics covered in this book include the laws of thermodynamics, phase changes, Maxwell-Boltzmann statistics and kinetic theory of gases.This latest edition has been updated with more problems and solutions and the original problems have also been modernized, excluding outdated questions and emphasizing those that rely on calculations. The problems range from fundamental to advanced in a wide range of topics on thermodynamics and statistical physics, easily enhancing the student's knowledge through workable exercises. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will challenge the student's capacity on finding the solutions. |
You may like...
Thermochemical Conversion Processes for…
Falah Alobaid, Jochen Stroehle
Hardcover
R1,244
Discovery Miles 12 440
High Speed Catamarans and Multihulls…
Liang Yun, Alan Bliault, …
Hardcover
R7,207
Discovery Miles 72 070
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R3,980
Discovery Miles 39 800
|