![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
This text provides an overview of important theory, principles, and concepts in the field of thermodynamics, making this abstract and complex subject easy to comprehend while building practical skills in the process. It enhances understanding of heat transfer, steam tables, energy concepts, power generation, psychrometry, refrigeration cycles, and more. Practical, easily accessible case studies illustrate various thermodynamics principles. Each chapter concludes with a list of questions or problems, with answers at the back of the book.
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phenomena and manmade applications. These new resources and methods help theoretical, computational, and experimental researchers synergistically interact to better understand the physical phenomena being studied. This book explores how inverse analysis can be used to increase understanding of interactions between technological systems and nature, by bridging the gap between data derived from measurements and information from theoretical predictions. Assembled in three parts?Modeling and Measurements in Heat Transfer, Inverse Heat Transfer Problems, and Applications?this self-contained resource:
Written by international experts, this book assumes basic heat transfer knowledge, presenting a balanced approach suitable for advanced undergraduates and graduate students, as well as practicing engineers and academic and industrial researchers. With coverage of modeling at the micro- and nanoscales, this book covers classic and novel approaches to help readers understand and solve heat transfer problems of all kinds.
This book deals in a basic and systematic manner with the fundamentals of random function theory and looks at some aspects related to arrival, vehicle headway and operational speed processes at the same time. The work serves as a useful practical and educational tool and aims at providing stimulus and motivation to investigate issues of such a strong applicative interest. It has a clearly discursive and concise structure, in which numerical examples are given to clarify the applications of the suggested theoretical model. Some statistical characterizations are fully developed in order to illustrate the peculiarities of specific modeling approaches; finally, there is a useful bibliography for in-depth thematic analysis.
Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors’ investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.
Low-Grade Thermal Energy Harvesting: Advances in Thermoelectrics, Materials, and Emerging Applications provides readers with fundamental and key concepts surrounding low-grade thermal energy conversion while also reviewing the latest research directions. The book covers the most promising and emerging technologies for low-grade heat recovery, harvesting and conversion, including wearable thermoelectrics and organic thermoelectrics. Each chapter includes key materials, principles, design and fabrication strategies for low-grade heat recovery. Special attention on emerging materials such as organic composites, 2D materials and nanomaterials are also included. The book emphasizes materials and device structures that enable the powering of wearable electronics and consumer electronics. The book is suitable for materials scientists and engineers in academia and R&D in manufacturing, industry, energy and electronics.
Thisvolumeexploresabductivecognition, animportantbut, atleastuntilthe third quarter of the last century, neglected topic in cognition. It integrates and further develops ideas already introduced in a previous book, which I published in 2001 (Abduction, Reason, and Science. Processes of Discovery and Explanation, Kluwer Academic/Plenum Publishers, New York). Thestatusofabductionisverycontroversial. Whendealingwithabductive reasoning misinterpretations and equivocations are common. What are the di?erences between abduction and induction? What are the di?erences - tween abduction and the well-known hypothetico-deductive method? What did Peircemeanwhen heconsideredabductionboth a kindofinferenceanda kind of instinct or when he considered perception a kind of abduction? Does abduction involve only the generation of hypotheses or their evaluation too? Are the criteria for the best explanation in abductive reasoning epistemic, or pragmatic, or both? Does abduction preserve ignorance or extend truth or both? How many kinds of abduction are there? Is abduction merely a kind of "explanatory" inference or does it involve other non-explanatory ways of guessing hypotheses? The book aims at increasing knowledge about creative and expert inf- ences. The study of these high-level methods of abductive reasoning is s- uated at the crossroads of philosophy, logic, epistemology, arti?cial intel- gence, neuroscience, cognitive psychology, animal cognition and evolutionary theories; that is, at the heart of cognitive science. Philosophers of science in thetwentiethcenturyhavetraditionallydistinguishedbetweentheinferential processesactiveinthelogicofdiscoveryandtheonesactiveinthelogicofj- ti?cation. Most have concluded that no logic of creative processes exists and, moreover, that a rational model of discovery is impossible. In short, scienti?c creative inferences are irrational and there is no "reasoning" to hypotheses.
Most of the specialists working in this interdisciplinary field of physics, biology, biophysics and medicine are associated with "The International Institute of Biophysics" (IIB), in Neuss, Germany, where basic research and possibilities for applications are coordinated. The growth in this field is indicated by the increase in financial support, interest from the scientific community and frequency of publications. Audience: The scientists of IIB have presented the most essential background and applications of biophotonics in these lecture notes in biophysics, based on the summer school lectures by this group. This book is devoted to questions of elementary biophysics, as well as current developments and applications. It will be of interest to graduate and postgraduate students, life scientists, and the responsible officials of industries and governments looking for non-invasive methods of investigating biological tissues.
More than to any other single individual, thermodynamics owes its creation to Nicolas-Leonard-Sadi ' Carnot. Sadi, the son of the "great Carnot" Lazare, was he- ily in uencedby his father. Not onlywas LazareMinister of War duringNapoleon's consulate, he was a respected mathematician and engineer in his own right. Ma- ematically, Lazare can lay claim to the de nition of the cross ratio, a projective invariant of four points. Lazare was also interested in how machines operated, - phasizing the roles of work and "vis viva," or living force, which was later to be associated with the kinetic energy. He arrived at a dynamical theory that machines in order to operate at maximum ef ciency should avoid "any impact or sudden change. " This was the heritage he left to his son Sadi. The mechanics of Newton, in his Principia, was more than a century old. It dealt with the mechanics of conservative systems in which there was no room for p- cesses involving heat and friction. Such processes would ruin the time reversibility of mechanical laws, which could no longer be derived by minimizing the difference between kinetic and potential energies. When Sadi wrote his only scienti c work in 1824, there were no laws governing the mechanical effects of heat. In fact, caloric theory was still in vogue, which treated heat as an imponderable uid that was c- served.
The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations, lasers, andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and system
This book contains the expanded lecture notes of the 32nd Saas-Fee Advanced Course. The three contributions present the central themes in modern research on the cold universe, ranging from cold objects at large distances to the physics of dust in cold clouds.
Models form the basis of any decision. They are used in di?erent context and for di?erent purposes: for identi?cation, prediction, classi?cation, or control of complex systems. Modeling is done theory-driven by logical-mathematical methods or data-driven based on observational data of the system and some algorithm or software for analyzing this data. Today, this approach is s- marized as Data Mining. There are many Data Mining algorithms known like Arti?cial Neural N- works, Bayesian Networks, Decision Trees, Support Vector Machines. This book focuses on another method: the Group Method of Data Handling. - thoughthismethodologyhasnotyetbeenwellrecognizedintheinternational science community asa verypowerfulmathematicalmodeling andknowledge extraction technology, it has a long history. Developed in 1968bythe Ukrainianscientist A.G. Ivakhnenko it combines the black-box approach and the connectionism of Arti?cial Neural Networks with well-proven Statistical Learning methods and with more behavior- justi?ed elements of inductive self-organization.Over the past 40 years it has been improving and evolving, ?rst by works in the ?eld of what was known in the U.S.A. as Adaptive Learning Networks in the 1970s and 1980s and later by signi? cantcontributions from scientists from Japan,China, Ukraine, Germany. Many papers and books have been published on this modeling technology, the vast majority of them in Ukrainian and Russian language.
This volume contains the proceedings of a NATO Advanced study Institute held at Geilo, Norway between 2 - 12 april 1991. This institute was the eleventh in a series held biannually at Geilo on the subject of phase transitions. It was intended to capture the latest ideas on selforgan ized patterns and criticality. The Institute brought together many lecturers, students and active re searchers in the field from a wide range of NATO and non-NATO countries. The main financial support came from the NATO scientific Affairs Divi sion, but additional support was obtained from the Norwegian Research Council for Science and the Humanities (NAVF) and Institutt for energi teknikk. The organizers would like to thank all these contributors for their help in promoting an exciting and rewarding meeting, and in doing so are confident that they echo the appreciation of all the parti cipants. In cooperative, equilibrium systems, physical states are described by spatio-temporal correlation functions. The intimate connection between space and time correlations is especially apparent at the critical point, the second order phase transition, where the spatial range and the decay time of the correlation function both become infinite. The salient features of critical phenomena and the history of the devel opment of this field of science are treated in the first chapter of this book."
This thesis, which won one of the six 2015 ATLAS Thesis Awards, concerns the study of the charmonium and bottomonium bound heavy quark bound states. The first section of the thesis describes the observation of a candidate for the chi_b(3P) bottomonium states. This represented the first observation of a new particle at the LHC and its existence was subsequently confirmed by D0 and LHCb experiments. The second part of the thesis presents measurements of the prompt and non-prompt production of the chi_c1 and chi_c2 charmonium states in proton-proton collisions. These measurements are compared to several theoretical predictions and can be used to inform the development of theoretical models of quarkonium production.
Despite scientific evidence that business-as-usual is unsustainable, there is a huge and widespread inertia to 'greening' the planet. Warming to Ecocide considers climate change from a thermodynamic perspective and asks whether market-driven organisations have carried us to the point of no return through the flawed economics of endless growth. Warming to Ecocide begins by exploring the thermodynamic origins of climate change. It demonstrates that equilibrium thermodynamics can provide full explanations for the basic processes of life such as photosynthesis and metabolism, and that non-equilibrium thermodynamics is close to providing an explanation for how life started. Armed with a solid appreciation of the power of thermodynamics, the second half of Warming to Ecocide discusses whether multinational corporations have convinced the public that climate change is insignificant and thereby neutered any all attempts by governments to espouse environmentally-friendly policies. It then goes on to offer strategies whereby mankind may avoid propelling the global average temperature above the pre-industrial level by more than 2 DegreesC, which scientists view as a threshold presaging catastrophic run-away processes.
This monograph provides a comprehensive study about how a dilute gas described by the Boltzmann equation responds under extreme nonequilibrium conditions. This response is basically characterized by nonlinear transport equations relating fluxes and hydrodynamic gradients through generalized transport coefficients that depend on the strength of the gradients. In addition, many interesting phenomena (e.g. chemical reactions or other processes with a high activation energy) are strongly influenced by the population of particles with an energy much larger than the thermal velocity, what motivates the analysis of high-degree velocity moments and the high energy tail of the distribution function. The authors have chosen to focus on shear flows with simple geometries, both for single gases and for gas mixtures. This allows them to cover the subject in great detail. Some of the topics analyzed include: -Non-Newtonian or rheological transport properties, such as the
nonlinear shear viscosity and the viscometric functions. The text can be read as a whole or can be used as a resource for selected topics from specific chapters.
"Temperature and Humidity Independent Control (THIC) of Air-conditioning System" focuses on temperature and humidity independent control (THIC) systems, which represents a new concept and new approach for indoor environmental control. This book presents the main components of the THIC systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices. Other relevant issues, such as operation and control strategy and case studies, are also included. This book is intended for air-conditioning system designers and engineers as well as researchers working with indoor environments. Xiaohua Liu is an associate professor at the Building Energy Research Center, Tsinghua University, China. Yi Jiang is a member of the Chinese Academy of Engineering, the director of the Building Energy Research Center, Tsinghua University, China and the director of the China-USA Joint Research Center on Clean Energy. Tao Zhang is a Ph.D. candidate at the Building Energy Research Center, Tsinghua University, China.
This book sheds light on the large-scale engineering systems that shape and guide our everyday lives. It does this by bringing together the latest research and practice defining the emerging field of Complex Engineered Systems. Understanding, designing, building and controlling such complex systems is going to be a central challenge for engineers in the coming decades. This book is a step toward addressing that challenge.
This thesis is concerned with establishing a rigorous, modern theory of the stochastic and dissipative forces on crystal defects, which remain poorly understood despite their importance in any temperature dependent micro-structural process such as the ductile to brittle transition or irradiation damage. The author first uses novel molecular dynamics simulations to parameterise an efficient, stochastic and discrete dislocation model that allows access to experimental time and length scales. Simulated trajectories are in excellent agreement with experiment. The author also applies modern methods of multiscale analysis to extract novel bounds on the transport properties of these many body systems. Despite their successes in coarse graining, existing theories are found unable to explain stochastic defect dynamics. To resolve this, the author defines crystal defects through projection operators, without any recourse to elasticity. By rigorous dimensional reduction, explicit analytical forms are derived for the stochastic forces acting on crystal defects, allowing new quantitative insight into the role of thermal fluctuations in crystal plasticity.
This unique book gives a comprehensive account of new mathematical tools used to solve polygon problems. In the 20th and 21st centuries, many problems in mathematics, theoretical physics and theoretical chemistry - and more recently in molecular biology and bio-informatics - can be expressed as counting problems, in which specified graphs, or shapes, are counted. One very special class of shapes is that of polygons. These are closed, connected paths in space. We usually sketch them in two-dimensions, but they can exist in any dimension. The typical questions asked include "how many are there of a given perimeter?," "how big is the average polygon of given perimeter?," and corresponding questions about the area or volume enclosed. That is to say "how many enclosing a given area?" and "how large is an average polygon of given area?" Simple though these questions are to pose, they are extraordinarily difficult to answer. They are important questions because of the application of polygon, and the related problems of polyomino and polycube counting, to phenomena occurring in the natural world, and also because the study of these problems has been responsible for the development of powerful new techniques in mathematics and mathematical physics, as well as in computer science. These new techniques then find application more broadly. The book brings together chapters from many of the major contributors in the field. An introductory chapter giving the history of the problem is followed by fourteen further chapters describing particular aspects of the problem, and applications to biology, to surface phenomena and to computer enumeration methods.
This work tries to provide an elementary introduction to the notions of continuum limit and universality in statistical systems with a large number of degrees of freedom. The existence of a continuum limit requires the appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature. In this context, we will emphasize the role of gaussian distributions and their relations with the mean field approximation and Landau's theory of critical phenomena. We will show that quasi-gaussian or mean-field approximations cannot describe correctly phase transitions in three space dimensions. We will assign this difficulty to the coupling of very different physical length scales, even though the systems we will consider have only local, that is, short range interactions. To analyze the unusual situation, a new concept is required: the renormalization group, whose fixed points allow understanding the universality of physical properties at large distance beyond mean-field theory. In the continuum limit, critical phenomena can be described by quantum field theories. In this framework, the renormalization group is directly related to the renormalization process, that is, the necessity to cancel the infinities that arise in straightforward formulations of the theory. We thus discuss the renormalization group in the context of various relevant field theories. This leads to proofs of universality and to efficient tools for calculating universal quantities in a perturbative framework. Finally, we construct a general functional renormalization group, which can be used when perturbative methods are inadequate.
This textbook explores the working principles of all kinds of turbomachines. The same theoretical framework is used to analyze the different machine types. The order in which the different kinds are treated is chosen by the possibility of gradually building up theoretical concepts. For each of the turbomachine kinds, a balance is sought between fundamental understanding and knowledge of practical aspects. Readers are invited through challenging exercises to consider how the theory applies to particular cases. This textbook appeals to senior undergraduate and graduate students in mechanical engineering and to professional engineers seeking to understand the operation of turbomachines. Readers will gain a fundamental understanding of turbomachines and will be able to make a reasoned choice of a turbomachine for a particular application.
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems. |
You may like...
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R2,979
Discovery Miles 29 790
Materials for Advanced Heat Transfer…
S. J. Vijay, Brusly Solomon, …
Paperback
R5,072
Discovery Miles 50 720
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
Nonequilibrium Thermodynamics…
Yasar Demirel, Vincent Gerbaud
Paperback
|