Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
This book introduces readers to the fundamentals of estimation and dynamical system theory, and their applications in the field of multi-source information fused autonomous navigation for spacecraft. The content is divided into two parts: theory and application. The theory part (Part I) covers the mathematical background of navigation algorithm design, including parameter and state estimate methods, linear fusion, centralized and distributed fusion, observability analysis, Monte Carlo technology, and linear covariance analysis. In turn, the application part (Part II) focuses on autonomous navigation algorithm design for different phases of deep space missions, which involves multiple sensors, such as inertial measurement units, optical image sensors, and pulsar detectors. By concentrating on the relationships between estimation theory and autonomous navigation systems for spacecraft, the book bridges the gap between theory and practice. A wealth of helpful formulas and various types of estimators are also included to help readers grasp basic estimation concepts and offer them a ready-reference guide.
Based on the design theory and development experience of Beidou navigation satellite system (BDS), this book highlights the space segment and the related satellite technologies as well as satellite-ground integration design from the perspective of engineering. The satellite navigation technology in this book is divided into uplink and reception technology, broadcasting link technology, inter-satellite link technology, time-frequency system technology, navigation signal generation and assessment technology, navigation information management technology, autonomous operation technology of navigation satellite. In closing, the book introduces readers to the technological development status and trend of BDS and other GNSS, and propose the technologies of future development. Unlike most current books on this topic, which largely concentrate on principles, receiver design or applications, the book also features substantial information on the role of satellite system in the GNSS and the process of signal information flow, and each chapter not only studies on the theoretical function and main technologies, but also focuses on engineering development. Accordingly, readers will gain not only a better understanding of navigation satellite systems as a whole, but also of their main components and key technologies.
This book addresses methods used in the synthesis of light alloys and composites for industrial applications. It begins with a broad introduction to virtually all aspects of the technology of light alloys and composite materials for aircraft and aerospace applications. The basic theory of fiber and particle reinforcements; light metallic material characteristics and composite systems; components forms, and manufacturing techniques and processes are discussed. The book then progresses to describe the production of alloys and composites by unconventional techniques, such as powder metallurgy, sandwich technique, severe plastic deformation, additive manufacturing, and thermal spray, making it appropriate for researchers in both academia and industry. It will be of special interest to aerospace engineers. Provides a broad introduction to the technology used in manufacturing light alloys and composite materials; Describes the current technologies employed in synthesizing light alloys made from advanced materials; Focuses on unconventional techniques used to produce light alloys and composites in aerospace applications.
Each volume in this new series is a collection of seminal articles on a theme of central importance in the study of transport history, selected from the leading journal in the field. Each contains between ten and a dozen articles selected by a distinguished scholar, as well as an authoritative new introduction by the volume editor. Individually they will form an essential foundation to the study of the history of a mode of transport; together they will make an incomparable library of the best modern research in the field.
China Satellite Navigation Conference (CSNC 2020) Proceedings presents selected research papers from CSNC 2020 held during 22nd-25th November in Chengdu, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 13 topics to match the corresponding sessions in CSNC2020, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
China Satellite Navigation Conference (CSNC 2020) Proceedings presents selected research papers from CSNC 2020 held during 22nd-25th November in Chengdu, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 13 topics to match the corresponding sessions in CSNC2020, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
China Satellite Navigation Conference (CSNC 2020) Proceedings presents selected research papers from CSNC 2020 held during 22nd-25th November in Chengdu, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 13 topics to match the corresponding sessions in CSNC2020, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
A practical and concise guide to the flight exercises for the aeroplane PPL and ratings associated with it. Both the JAR and NPPL Private Pilot's License syllabuses are covered, as well as the JAR Night Rating, the CAA Instrument Meteorological Conditions Rating and the JAR Multi-Engine Rating. The common variations - retractable undercarriages, tailwheels, variable-pitch propellers and super- and turbocharging- are also covered. Topics include: The requirements for each license/rating listed, with the entry-to-training requirements, privileges and validity/currency of each; Each exercise is described in detail, explaining what has to be achieved and how to do it; Useful checklists and aides-memoire throughout
Based on research into jets in supersonic crossflow carried out by the authors' team over the past 15 years, this book summarizes and presents many cutting-edge findings and analyses on this subject. It tackles the complicated mixing process of gas jets and atomization process of liquid jets in supersonic crossflow, and studies their physical mechanisms. Advanced experimental and numerical techniques are applied to further readers' understanding of atomization, mixing, and combustion of fuel jets in supersonic crossflow, which can promote superior fuel injection design in scramjet engines. The book offers a valuable reference guide for all researchers and engineers working on the design of scramjet engines, and will also benefit graduate students majoring in aeronautical and aerospace engineering.
Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB (R), making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.
Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB (R), making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.
This book systematically discusses the signal design theory and technologies for next-generation satellite navigation systems. It provides comprehensive information on the basic concept, theory, and key technologies employed in satellite navigation system signal design. Starting from the basic elements of the navigation signal, it combines traditional and advanced technologies into an organic whole, offering readers a complete system for signal design. Thanks to its rich content and clear structure, it is well suited as a reference guide for researchers and engineers in the fields of satellite navigation, positioning, etc. The book can also be used as teaching material or supplemental reading material by professors and graduate students alike.
The mechanics of similarity encompasses the analysis of dimensions, performed by various procedures, the gasdynamic similarity and the model technology. The analysis of dimensions delivers the dimensionless numbers by which specific physical challenges can be described with a reduced number of variables. Thereby the assessment of physical problems is facilitated. For fluid dynamics and all sorts of heat transfer the discipline of the mechanics of similarity was so important in the past, that the historical background is highlighted of all the persons who have contributed to the development of this discipline. The goal of the classical gasdynamic similarity was to find rules, which enables the aerodynamic engineer to perform transformations from existing flow fields to others, which meet geometrical and other specific flow field parameters. Most of these rules and findings do no longer play a role today, because a lot of potent experimental and theoretical/numerical methods are now available. This problem is addressed in the book. A recent investigation regarding the longitudinal aerodynamics of space vehicles has revealed, that there exist other astonishing similarities for hypersonic and supersonic flight Mach numbers. It seems, that obviously most of the longitudinal aerodynamics is independent from the geometrical configurations of the space vehicle considered, if a simple transformation is applied. A section of this book is devoted to these new findings.
Focuses on the methods of solving incompressible flows, although flows with significant property change due to heat transfer are also covered. Covers turbulent flow simulation, unstructured mesh, and two-phase flows. Uses a practical approach for CFD to build a foundation for those planning to work on low-speed flows. Provides detailed steps of solving 1-D and 2-D flow examples and MATLAB (R) codes of important algorithms. Includes numerous real-word examples and worked problems.
Beginning as a young boy, Jules takes you through the unique process of becoming a Naval Aviator, engages you into his experiences as a brand new pilot in a combat squadron and, finally becoming a flying warrior. Having survived two combat cruises aboard the aircraft carrier USS Kitty Hawk from 1966-1968, compiling 332 career carrier take offs and landings, being shot at daily by enemy fire while completing 200 combat missions over Vietnam, he clearly shares the views of the aviators who flew along with him on these missions while fighting this unpopular war. Jules was awarded the Nation's Distinguished Flying Cross, 21 Air Medals, and many other accolades. After reading this book the reader will have a new understanding and appreciation about the Warriors who protect not only their comrades in arms, but the defense of the nation as well.
Beginning as a young boy, Jules takes you through the unique process of becoming a Naval Aviator, engages you into his experiences as a brand new pilot in a combat squadron and, finally becoming a flying warrior. Having survived two combat cruises aboard the aircraft carrier USS Kitty Hawk from 1966-1968, compiling 332 career carrier take offs and landings, being shot at daily by enemy fire while completing 200 combat missions over Vietnam, he clearly shares the views of the aviators who flew along with him on these missions while fighting this unpopular war. Jules was awarded the Nation's Distinguished Flying Cross, 21 Air Medals, and many other accolades. After reading this book the reader will have a new understanding and appreciation about the Warriors who protect not only their comrades in arms, but the defense of the nation as well.
Providing comprehensive coverage, this is the first book to systematically introduce different flow control techniques. With a dedicated chapter for each technique, all of the most important, typical and up-to-date methods are discussed, including the vortex generator, biological techniques, the jet and synthetic jet, the plasma actuator, and closed-loop control. Understand their key characteristics and control mechanisms, and learn about their applications in different fields such as aviation and aerospace, mechanical engineering, and building construction. The necessary background on flow control is provided, including the history of the discipline, and the definition, classification and development of each technique, making this essential reading for graduate students, researchers and engineers working in the field.
This book collects selected papers from the 6th Conference on Signal and Information Processing, Networking and Computers, held in Guiyang, China, on August 13 - 16, 2019. Focusing on the latest advances in information theory, communication systems, computer science, aerospace technologies, big data and other related technologies, it offers a valuable resource for researchers and industrial practitioners alike.
This book presents a comprehensive overview of the recent advances in the domain of optimal guidance, exploring the characteristics of various optimal guidance algorithms and their pros and cons. Optimal guidance is based on the concept of trajectory optimization, which minimizes the meaningful performance index while satisfying certain terminal constraints, and by properly designing the cost function the guidance command can serve as a desired pattern for a variety of mission objectives. The book allows readers to gain a deeper understanding of how optimal guidance law can be utilized to achieve different mission objectives for missiles and UAVs, and also explores the physical meaning and working principle of different new optimal guidance laws. In practice, this information is important in ensuring confidence in the performance and reliability of the guidance law when implementing it in a real-world system, especially in aerospace engineering where reliability is the first priority.
This book presents a systematic introduction to particle damping technologies, which can be used to effectively mitigate seismic-induced and wind-induced vibration in various structures. Further, it offers comprehensive information on the latest research advances, e.g. a refined simulation model based on the discrete element method and a simplified simulation model based on equivalent principles. It then intensively studies the vibration attenuation effects of particle dampers subjected to different dynamic loads; in this context, the book proposes a new damping mechanism and "global'' measures that can be used to evaluate damping performance. Moreover, the book uses the shaking table test and wind tunnel test to verify the proposed simulation methods, and their satisfactory damping performance is confirmed. To facilitate the practical engineering application of this technology, optimization design guidelines for particle impact dampers are also provided. In closing, the book offers a preliminary exploration of semi-active particle damping technology, which holds great potential for extension to other applications in which the primary system is subjected to non-stationary excitations.
This book provides a solid foundation for understanding radar energy warfare and stealth technology. The book covers the fundamentals of radar before moving on to more advanced topics, including electronic counter and electronic counter-counter measures, radar absorbing materials, radar cross section, and the science of stealth technology. A final section provides an introduction to Luneberg lens reflectors. The book will provide scientists, engineers, and students with valuable guidance on the fundamentals needed to understand state-of-the-art radar energy warfare and stealth technology research and applications.
This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.
As the sister book to "Introduction to Multicopter Design and Control," published by Springer in 2017, this book focuses on using a practical process to help readers to deepen their understanding of multicopter design and control. Novel tools with tutorials on multicopters are presented, which can help readers move from theory to practice. Experiments presented in this book employ: (1) The most widely-used flight platform - multicopters - as a flight platform; (2) The most widely-used flight pilot hardware - Pixhawk - as a control platform; and (3) One of the most widely-used programming languages in the field of control engi-neering - MATLAB + Simulink - as a programming language. Based on the current advanced development concept Model-Based Design (MBD)process, the three aspects mentioned above are closely linked. Each experiment is implemented in MATLAB and Simulink, and the numerical simula-tion test is carried out on a built simulation platform. Readers can upload the controller to the Pixhawk autopilot using automatic code generation technology and form a closed loop with a given real-time simulator for Hardware-In-the-Loop (HIL) testing. After that, the actual flight with the Pixhawk autopilot can be performed. This is by far the most complete and clear guide to modern drone fundamentals I've seen.It covers every element of these advanced aerial robots and walks through examples and tutorials based on the industry's leading open-source software and tools. Read this book, and you'll be well prepared to work at the leading edge of this exciting new industry. Chris Anderson, CEO 3DR and Chairman, the Linux Foundation's Dronecode Project The development of a multicopter and its applications is very challenging in the robotics area due to the multidomain knowledge involved. This book systematically addresses the design, simulation and implementation of multicopters with the industrial leading workflow - Model-Based Design, commonly used in the automotive and aero-defense industries. With this book, researchers and engineers can seamlessly apply the concepts, workflows, and tools in other engineering areas, especially robot design and robotics ap-plication development. Dr. Yanliang Zhang, Founder of Weston Robot, EX-product Manager of Robotics System Toolbox at the MathWorks
This book discusses autonomous spacecraft navigation based on X-ray pulsars, analyzing how to process X-ray pulsar signals, how to simulate them, and how to estimate the pulse's time of arrival based on epoch folding. In turn, the book presents a range of X-ray pulsar-based spacecraft positioning/time-keeping/attitude determination methods. It also describes the error transmission mechanism of the X-ray pulsar-based navigation system and its corresponding compensation methods. Further, the book introduces readers to navigation based on multiple measurement information fusion, such as X-ray pulsar/traditional celestial body integrated navigation and X-ray pulsar/INS integrated navigation. As such, it offers readers extensive information on both the theory and applications of X-ray pulsar-based navigation, and reflects the latest developments in China and abroad. |
You may like...
The Wright Brothers - The Dramatic Story…
David McCullough
Paperback
(2)
Air Law - A Comprehensive Sourcebook for…
Philippe-Joseph Salazar
Paperback
The Entomologist's Record and Journal of…
James William 1858-1911 Tutt
Hardcover
R865
Discovery Miles 8 650
Low-Wing Aircraft Visualized Flight…
Asa Test Prep Board
Spiral bound
|