![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
The SR-71 Blackbird is an iconic aircraft that has come to symbolize America's technological superiority during the Cold War. Using recently declassified information, globally renowned expert Paul Crickmore updates his definitive account of the aircraft. The Lockheed SR-71 Blackbird ranks as one of the most elegant, sleek and powerful aeroplanes ever designed. But it was not built to be admired – it was built not to be seen at all. The high-altitude aerial reconnaissance sorties it was to perform were top secret and carefully concealed from public knowledge. However, as the aircraft have become museum pieces and details of their work declassified, the whole story of their design and operation can finally be told. This updated edition of Paul Crickmore's classic Lockheed Blackbird: Beyond the Secret Missions is based on 850 pages of documentation and images declassified by the CIA covering the A-12 Oxcart programme. These highly significant documents range from discussions at the highest levels of the US government concerning the rationale for Oxcart's development and eventual deployment, to extremely detailed intelligence data gleaned from each of the 29 operational missions flown by Oxcart during Operation Black Shield. The Blackbird family of aircraft continue to fascinate a wide age group and, since the aircraft will never fly again, its history has become timeless. This new edition will provide the last word on the SR-71 Blackbird and its operational history.
Based on the design theory and development experience of Beidou navigation satellite system (BDS), this book highlights the space segment and the related satellite technologies as well as satellite-ground integration design from the perspective of engineering. The satellite navigation technology in this book is divided into uplink and reception technology, broadcasting link technology, inter-satellite link technology, time-frequency system technology, navigation signal generation and assessment technology, navigation information management technology, autonomous operation technology of navigation satellite. In closing, the book introduces readers to the technological development status and trend of BDS and other GNSS, and propose the technologies of future development. Unlike most current books on this topic, which largely concentrate on principles, receiver design or applications, the book also features substantial information on the role of satellite system in the GNSS and the process of signal information flow, and each chapter not only studies on the theoretical function and main technologies, but also focuses on engineering development. Accordingly, readers will gain not only a better understanding of navigation satellite systems as a whole, but also of their main components and key technologies.
Situations and systems are easier to change than the human condition - particularly when people are well-trained and well-motivated, as they usually are in maintenance organisations. This is a down-to-earth practitioner's guide to managing maintenance error, written in Dr. Reason's highly readable style. It deals with human risks generally and the special human performance problems arising in maintenance, as well as providing an engineer's guide for their understanding and the solution. After reviewing the types of error and violation and the conditions that provoke them, the author sets out the broader picture, illustrated by examples of three system failures. Central to the book is a comprehensive review of error management, followed by chapters on:- managing person, the task and the team; - the workplace and the organization; - creating a safe culture; It is then rounded off and brought together, in such a way as to be readily applicable for those who can make it work, to achieve a greater and more consistent level of safety in maintenance activities. The readership will include maintenance engineering staff and safety officers and all those in responsible roles in critical and systems-reliant environments, including transportation, nuclear and conventional power, extractive and other chemical processing and manufacturing industries and medicine.
This book offers a comprehensive overview of recently developed space multi-tethers, such as maneuverable space tethered nets and space tethered formation. For each application, it provides detailed derivatives to describe and analyze the mathematical model of the system, and then discusses the design and proof of different control schemes for various problems. The dynamics modeling presented is based on Newton and Lagrangian mechanics, and the book also introduces Hamilton mechanics and Poincare surface of section for dynamics analysis, and employs both centralized and distributed controllers to derive the formation question of the multi-tethered system. In addition to the equations and text, it includes 3D design drawings, schematic diagrams, control scheme blocks and tables to make it easy to understand. This book is intended for researchers and graduate students in the fields of astronautics, control science, and engineering.
Airport design and operation are always closely related. A poor design affects the airport operations, resulting in increased costs, and a sound understanding of operation is needed to enable good design. The aim of this third edition is to present an updated and integrated approach to the two. The chapters have been enhanced to reflect changes in technology and the way the air transport industry functions. Key topics that are newly addressed in this book include low cost airline operations, security issues and EASA regulations on airports. A new chapter covering extended details about wildlife control has been added to the volume.
This book presents the results of a European-Chinese collaborative research project, Manipulation of Reynolds Stress for Separation Control and Drag Reduction (MARS), including an analysis and discussion of the effects of a number of active flow control devices on the discrete dynamic components of the turbulent shear layers and Reynolds stress. From an application point of view, it provides a positive and necessary step to control individual structures that are larger in scale and lower in frequency compared to the richness of the temporal and spatial scales in turbulent separated flows.
This book introduces readers to the fundamentals of estimation and dynamical system theory, and their applications in the field of multi-source information fused autonomous navigation for spacecraft. The content is divided into two parts: theory and application. The theory part (Part I) covers the mathematical background of navigation algorithm design, including parameter and state estimate methods, linear fusion, centralized and distributed fusion, observability analysis, Monte Carlo technology, and linear covariance analysis. In turn, the application part (Part II) focuses on autonomous navigation algorithm design for different phases of deep space missions, which involves multiple sensors, such as inertial measurement units, optical image sensors, and pulsar detectors. By concentrating on the relationships between estimation theory and autonomous navigation systems for spacecraft, the book bridges the gap between theory and practice. A wealth of helpful formulas and various types of estimators are also included to help readers grasp basic estimation concepts and offer them a ready-reference guide.
This book, edited by the European Space Policy Institute, is the first international publication, following UNISPACE+50, to analyze how space capacity building can empower the international community towards fully accessing all the economic and societal benefits that space assets and data can offer. New innovation models are increasingly spreading across various sectors and disciplines, including space, which is becoming an integral part of many societal activities (e.g. telecoms, weather, climate change and environmental monitoring, civil protection, infrastructures, transportation and navigation, healthcare and education). The book helps readers construct their own space capacity building roadmaps, which take into account key stakeholders and also new private actors, NGOs and civil society. Starting from a policy and strategy perspective, it addresses key aspects of capacity building, including innovation and exploration, global health, climate change and resilient societies. It outlines the available options and summarizes the ideal programmatic conditions for their successful implementation. Showcasing reflections from a range of senior space professionals around the world, with their unique perspectives and solutions, it provides a rich mosaic in which various cultural and policy approaches to space are translated into actionable programs and ideas so that space may truly benefit all of humankind.
This book focuses on the combustion performance and application of innovative energetic materials for solid and hybrid space rocket propulsion. It provides a comprehensive overview of advanced technologies in the field of innovative energetic materials and combustion performance, introduces methods of modeling and diagnosing the aggregation/agglomeration of active energetic metal materials in solid propellants, and investigates the potential applications of innovative energetic materials in solid and hybrid propulsion. In addition, it also provides step-by-step solutions for sample problems to help readers gain a good understanding of combustion performance and potential applications of innovative energetic materials in space propulsion. This book serves as an excellent resource for researchers and engineers in the field of propellants, explosives, and pyrotechnics.
This book presents a collection of chapters, which address various contexts and challenges of the idea of human enhancement for the purposes of human space missions. The authors discuss pros and cons of mostly biological enhancement of human astronauts operating in hostile space environments, but also ethical and theological aspects are addressed. In contrast to the idea and program of human enhancement on Earth, human enhancement in space is considered a serious and necessary option. This book aims at scholars in the following fields: ethics and philosophy, space policy, public policy, as well as biologists and psychologists.
Flight For Safety is an aviation thriller where fiction mirrors truth and each flight is a game of Russian roulette. Aircraft are crashing after computer failures, incidents are occurring worldwide, coming close to hull losses, with mismanagement of aircraft navigation systems, and airline training programs are being cancelled. Aerodynamic skills are failing and the new generation pilots never learned them. But when Darby Bradshaw learns what is happening at her airline, she steps into a far-reaching conspiracy where she has become the target.
This book presents iterative learning control (ILC) to address practical issues of flexible structures. It is divided into four parts: Part I provides a general introduction to ILC and flexible structures, while Part II proposes various types of ILC for simple flexible structures to address issues such as vibration, input saturation, input dead-zone, input backlash, external disturbances, and trajectory tracking. It also includes simple partial differential equations to deal with the common problems of flexible structures. Part III discusses the design of ILC for flexible micro aerial vehicles and two-link manipulators, and lastly, Part IV offers a summary of the topics covered. Unlike most of the literature on ILC, which focuses on ordinary differential equation systems, this book explores distributed parameter systems, which are comparatively less stabilized through ILC.Including a comprehensive introduction to ILC of flexible structures, it also examines novel approaches used in ILC to address input constraints and disturbance rejection. This book is intended for researchers, graduate students and engineers in various fields, such as flexible structures, external disturbances, nonlinear inputs and tracking control.
This book systematically discusses the signal design theory and technologies for next-generation satellite navigation systems. It provides comprehensive information on the basic concept, theory, and key technologies employed in satellite navigation system signal design. Starting from the basic elements of the navigation signal, it combines traditional and advanced technologies into an organic whole, offering readers a complete system for signal design. Thanks to its rich content and clear structure, it is well suited as a reference guide for researchers and engineers in the fields of satellite navigation, positioning, etc. The book can also be used as teaching material or supplemental reading material by professors and graduate students alike.
This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the 'eagle eyes' that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites - which can determine satellites' current status and predict their failure based on telemetry data - is one of the most important current issues in aerospace engineering. This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.
This book gathers papers presented at the 36th conference and 30th Symposium of the International Committee on Aeronautical Fatigue and Structural integrity. Focusing on the main theme of "Structural Integrity in the Age of Additive Manufacturing", the chapters cover different aspects concerning research, developments and challenges in this field, offering a timely reference guide to designers, regulators, manufacturer, and both researchers and professionals of the broad aerospace community.
This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book's primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.
This book presents a comprehensive overview of the recent advances in the domain of optimal guidance, exploring the characteristics of various optimal guidance algorithms and their pros and cons. Optimal guidance is based on the concept of trajectory optimization, which minimizes the meaningful performance index while satisfying certain terminal constraints, and by properly designing the cost function the guidance command can serve as a desired pattern for a variety of mission objectives. The book allows readers to gain a deeper understanding of how optimal guidance law can be utilized to achieve different mission objectives for missiles and UAVs, and also explores the physical meaning and working principle of different new optimal guidance laws. In practice, this information is important in ensuring confidence in the performance and reliability of the guidance law when implementing it in a real-world system, especially in aerospace engineering where reliability is the first priority.
The ideal textbook for anyone working towards a career in aircraft maintenance engineering Written to meet the needs of aircraft maintenance certifying staff, this book covers the basic knowledge requirements of ECAR 66 (previously JAR-66) for all aircraft engineers within Europe. ECAR 66 regulations are being continuously harmonised with Federal Aviation Administration (FAA) requirements in the USA, making this book ideal for all aerospace students. ECAR 66 modules 1, 2, 3, 4, and 8 are covered in full and to a depth appropriate for Aircraft Maintenance Engineers (AME). This book will also serve as a valuable reference for those taking programs in ECAR 147 and FAR 147 establishments. In addition, the necessary mathematics, aerodynamics and electrical principles have been included to meet the requirements of introductory aerospace engineering courses. To aid learning and to prepare readers for examinations, numerous written and multiple-choice questions are provided with a large number of revision questions at the end of each chapter.
This book studies the dynamics of 2D objects moving through turbulent fluids. It examines the decay of turbulence over extended time scales, and compares the dynamics of non-spherical particles moving through still and turbulent fluids. The book begins with an introduction to the project, its aims, and its relevance for industrial applications. It then discusses the movement of planar particles in quiescent fluid, and presents the numerous methodologies used to measure it. The book also presents a detailed analysis of the falling style of irregular particles, which makes it possible to estimate particle trajectory and wake morphology based on frontal geometry. In turn, the book provides the results of an analysis of physically constrained decaying turbulence in a laboratory setting. These results suggest that large-scale cut-off in numerical simulations can result in severe bias in the computed turbulent kinetic energy for long waiting times. Combining the main text with a wealth of figures and sketches throughout, the book offers an accessible guide for all engineering students with a basic grasp of fluid mechanics, while the key findings will also be of interest to senior researchers.
This book explores the design of optimal trajectories for space maneuver vehicles (SMVs) using optimal control-based techniques. It begins with a comprehensive introduction to and overview of three main approaches to trajectory optimization, and subsequently focuses on the design of a novel hybrid optimization strategy that combines an initial guess generator with an improved gradient-based inner optimizer. Further, it highlights the development of multi-objective spacecraft trajectory optimization problems, with a particular focus on multi-objective transcription methods and multi-objective evolutionary algorithms. In its final sections, the book studies spacecraft flight scenarios with noise-perturbed dynamics and probabilistic constraints, and designs and validates new chance-constrained optimal control frameworks. The comprehensive and systematic treatment of practical issues in spacecraft trajectory optimization is one of the book's major features, making it particularly suited for readers who are seeking practical solutions in spacecraft trajectory optimization. It offers a valuable asset for researchers, engineers, and graduate students in GNC systems, engineering optimization, applied optimal control theory, etc.
This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the 'one controller fits all models' within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems. |
![]() ![]() You may like...
Your Digital Afterlives - Computational…
E. Steinhart
Hardcover
Authentication of Food and Wine
Susan E. Ebeler, Gary R. Takeoka, …
Hardcover
R3,332
Discovery Miles 33 320
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R4,171
Discovery Miles 41 710
Handbook of Research on Organizational…
Madjid Tavana, Kartikeya Puranam
Hardcover
R6,748
Discovery Miles 67 480
|