![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
Random Vibration in Spacecraft Structures Design is based on the lecture notes "Spacecraft structures" and "Special topics concerning vibration in spacecraft structures" from courses given at Delft University of Technology. The monograph, which deals with low and high frequency mechanical, acoustic random vibrations is of interest to graduate students and engineers working in aerospace engineering, particularly in spacecraft and launch vehicle structures design.
This volume presents new concepts and methods in Air Traffic Management, in particular: Collaborative Decision Making, as it incorporates for the first time airline companies in the management process; Congestion Pricing, as many part of the systems are and will remain saturated, hence only leveling of demand can contribute to global efficiency; Flow Management Methods, as the most important tools in planning and analysis; Models of Controller-Pilot Interaction, as deregulation increases the workload of this communication; Weather Forecast, as airport capacity is strongly affected by weather conditions.
Extremum-seeking control tracks a varying maximum or minimum in a performance function such as output or cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum-seeking Control and Applications is divided into two parts. In the first, the authors review existing analog-optimization-based extremum-seeking control including gradient-, perturbation- and sliding-mode-based control designs. They then propose a novel numerical-optimization-based extremum-seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms - line search and trust region methods - are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved using the robustness results of the optimization algorithms and the asymptotic state regulator by which existing nonlinear adaptive control techniques can be introduced for robust design. The approach used is easier to implement and tends to be more robust than those that use perturbation-based extremum-seeking control. The second part of the book deals with a variety of applications of extremum-seeking control: a comparative study of extremum-seeking control schemes in antilock braking system design; source seeking, formation control, collision and obstacle avoidance for groups of autonomous agents; mobile radar networks; and impedance matching. MATLAB (R)/Simulink (R) code which can be downloaded from www.springer.com/ISBN helps readers to reproduce the results presented in the text and gives them a head start for implementing the algorithms in their own applications. Extremum-seeking Control and Applications will interest academics and graduate students working in control, and industrial practitioners from a variety of backgrounds: systems, automotive, aerospace, communications, semiconductor and chemical engineering.
Renamed to reflect the increased role of digital electronics in modern flight control systems, Cary Spitzer's industry-standard Digital Avionics Handbook, Second Edition is available in two comprehensive volumes designed to provide focused coverage for specialists working in different areas of avionics development. The first installment, Avionics: Elements, Software, and Functions covers the building blocks and enabling technologies behind modern avionics systems. It discusses data buses, displays, human factors, standards, and flight systems in detail and includes new chapters on the Time-Triggered Protocol (TTP), ARINC specification 653, communications, and vehicle health management systems.
Now in its ninth edition, Air Transportation: A Global Management Perspective by John Wensveen is a well-proven, accessible textbook that offers a comprehensive introduction to the theory and practice of air transport management. In addition to explaining the fundamentals, the book transports the reader to the leading edge of the discipline, using past and present trends to forecast future challenges and opportunities the industry may face, encouraging the reader to think deeply about the decisions a manager implements.
Vibration of Periodic Structures introduces the fundamentals of the periodic structure theory. The book shows how knowledge of stop and pass bands can be utilized to develop a method for finding natural frequency distribution in a finite periodic structure. Basic concepts are then extended to wave propagation in infinitely long periodically supported beams and plates and the distribution of natural frequencies of a similar structure of finite length. The method is then extended to vibration of skin-stringer structures and the structural-acoustic properties of a section of an aircraft fuselage. This book is ideal for practicing engineers in various industries involved in the analysis of vibration of structures with periodic properties and prediction of supersonic flutter characteristics of said structures.
In the present volume numerous descriptions of Ram accelerators are presented. These descriptions provide good overview on the progress made and the present state of the Ram accelerator technology worldwide. In addition, articles describing light gas gun, ballistic range including a chapter dealing with shock waves in solids are given. Along with the technical description of considered facilities, samples of obtained results are also included. Each chapter is written by an expert in the described topic providing a comprehensive description of the discussed phenomena.
Renamed to reflect the increased role of digital electronics in modern flight control systems, Cary Spitzer's industry-standard Digital Avionics Handbook, Second Edition is available in two comprehensive volumes designed to provide focused coverage for specialists working in different areas of avionics development. The second installment, Avionics: Development and Implementation explores the practical side of avionics. The book examines such topics as modeling and simulation, electronic hardware reliability, certification, fault tolerance, and several examples of real-world applications. New chapters discuss RTCA DO-297/EUROCAE ED-124 integrated modular avionics development and the Genesis platform.
Air traffic controllers need advanced information and automated systems to provide a safe environment for everyone traveling by plane. One of the primary challenges in developing training for automated systems is to determine how much a trainee will need to know about the underlying technologies to use automation safely and efficiently. To ensure safety and success, task analysis techniques should be used as the basis of the design for training in automated systems in the aviation and aerospace industries. Automated Systems in the Aviation and Aerospace Industries is a pivotal reference source that provides vital research on the application of underlying technologies used to enforce automation safety and efficiency. While highlighting topics such as expert systems, text mining, and human-machine interface, this publication explores the concept of constructing navigation algorithms, based on the use of video information and the methods of the estimation of the availability and accuracy parameters of satellite navigation. This book is ideal for aviation professionals, researchers, and managers seeking current research on information technology used to reduce the risk involved in aviation.
This thesis proposes new power converter topologies suitable for aircraft systems. It also proposes both AC-DC and DC-DC types of converters for different electrical loads to improve the performance these systems. To increase fuel efficiency and reduce environmental impacts, less efficient non-electrical aircraft systems are being replaced by electrical systems. However, more electrical systems requires more electrical power to be generated in the aircraft. The increased consumption of electrical power in both civil and military aircrafts has necessitated the use of more efficient electrical power conversion technologies. This book presents acomprehensive mathematical analysis and the design and digital simulation of the power converters. Subsequently it discusses the construction of the hardware prototypes of each converter and the experimental tests carried out to verify the benefits of the proposed solutions in comparison to the existing solutions.
All technologies differ from one another. They are as varied as humanity's interaction with the physical world. Even people attempting to do the same thing produce multiple technologies. For example, John H. White discovered more than l 1000 patents in the 19th century for locomotive smokestacks. Yet all technologies are processes by which humans seek to control their physical environment and bend nature to their purposes. All technologies are alike. The tension between likeness and difference runs through this collection of papers. All focus on atmospheric flight, a twentieth-century phenomenon. But they approach the topic from different disciplinary perspectives. They ask disparate questions. And they work from distinct agendas. Collectively they help to explain what is different about aviation - how it differs from other technologies and how flight itself has varied from one time and place to another. The importance of this topic is manifest. Flight is one of the defining technologies of the twentieth century. Jay David Bolter argues in Turing's Man that certain technologies in certain ages have had the power not only to transform society but also to shape the way in which people understand their relationship with the physical world. "A defining technology," says Bolter, "resembles a magnifying glass, which collects and focuses seemingly disparate ideas in a culture into one bright, sometimes piercing ray." 2 Flight has done that for the twentieth century.
Aviation noise remains the primary hindrance to expansion of airport and airspace capacity in the United States. This book describes the development and practice of U.S. aircraft noise regulation, as well as the practical consequences of regulatory policy. Starting in the pre-jet transport era, the book traces the development of the modern framework for characterizing, standardizing, predicting, disclosing, and mitigating aircraft noise and its effects on airport-vicinity communities. Among other matters, the book treats noise-related consequences of the 1978 deregulation of the airline industry; prediction and mitigation of community reaction to airport noise; land use compatibility planning; recent research and industry trends; and some suggestions for potential improvements to current policy. Initial chapters describe the assumptions underlying aircraft noise regulation, and lay out the chronology of U.S. aircraft noise regulatory practice. Later chapters provide overviews of population-level effects of aviation noise, including health effects, speech and sleep interference, and annoyance. Readers will learn why predictions of the prevalence of aircraft noise-induced annoyance have systematically underestimated adverse community response to aircraft noise, and how such underestimation has complicated approval and funding of airport and airspace improvement projects. They will also learn why attempts at noise-compatible land use planning are seldom fully successful.
Updated to integrated modular avionics, and cabin and aircraft information systems Ideal for students gaining EASA Part 66 licences, particularly the B1 or B2 licence One of Routledge's core aircraft maintenance titles.
The two first CEAS (Council of European Aerospace Societies) Specialist Conferences on Guidance, Navigation and Control (CEAS EuroGNC) were held in Munich, Germany in 2011 and in Delft, The Netherlands in 2013. ONERA The French Aerospace Lab, ISAE (Institut Superieur de l'Aeronautique et de l'Espace) and ENAC (Ecole Nationale de l'Aviation Civile) accepted the challenge of jointly organizing the 3rd edition. The conference aims at promoting new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems. It represents a unique forum for communication and information exchange between specialists in the fields of GNC systems design and operation, including air traffic management. This book contains the forty best papers and gives an interesting snapshot of the latest advances over the following topics: l Control theory, analysis, and design l Novel navigation, estimation, and tracking methods l Aircraft, spacecraft, missile and UAV guidance, navigation, and control l Flight testing and experimental results l Intelligent control in aerospace applications l Aerospace robotics and unmanned/autonomous systems l Sensor systems for guidance, navigation and control l Guidance, navigation, and control concepts in air traffic control systems For the 3rd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with standard journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.
Long before the space race captured the world's attention, K. E.
Tsiolkovskii first conceived of multi-stage rockets that would
later be adapted as the basis of both the U.S. and Soviet rocket
programs.
This book presents the most important and crucial problems of space automation in context of future exploration programs. These programs could involve such issues as space situational awareness program, planetary protection, exploitation of minerals, assembly, manufacturing, and search for new habitable location for next human generations. The future exploration of Space and related activities will involve robots. In particular, new autonomous robots need to be developed with high degree of intelligence. Such robots would make space exploration possible but also they would make space automation an important factor in variety of activities related to Space.
This book discusses state estimation and control procedures for a low-cost unmanned aerial vehicle (UAV). The authors consider the use of robust adaptive Kalman filter algorithms and demonstrate their advantages over the optimal Kalman filter in the context of the difficult and varied environments in which UAVs may be employed. Fault detection and isolation (FDI) and data fusion for UAV air-data systems are also investigated, and control algorithms, including the classical, optimal, and fuzzy controllers, are given for the UAV. The performance of different control methods is investigated and the results compared. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles covers all the important issues for designing a guidance, navigation and control (GNC) system of a low-cost UAV. It proposes significant new approaches that can be exploited by GNC system designers in the future and also reviews the current literature. The state estimation, control and FDI methods are illustrated by examples and MATLAB (R) simulations. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles will be of interest to both researchers in academia and professional engineers in the aerospace industry. Graduate students may also find it useful, and some sections are suitable for an undergraduate readership.
New Horizons: Reconnaissance of the Pluto-Charon System and the Kuiper Belt C. T. Russell Originally published in the journal Space Science Reviews, Volume 140, Nos 1-4, 1-2. DOI: 10. 1007/s11214-008-9450-0 (c) Springer Science+Business Media B. V. 2008 Exploration is mankind's imperative. Since the beginnings of civilization, men and women have not been content to build a wall around their settlements and stay within its con nes. They explored the land around them, climbed the mountains, and scanned the horizons. The boldest among them pushed exploration to the most distant frontiers of the planet. As a result, much of the Earth was inhabited well before the days of the renowned European - th th plorers of the 15 and 16 centuries. Exploration did not cease, after the circumnavigation of the globe; it continued to the present. Today explorers are going in new directions, not just east and west, north and south. They explore backward in time and upward in space. Arc- ology explores the shorter time scales, and geochemistry the longer time scales of geophy- cal events: asteroidal and cometary collisions, magnetic reversals, continental formation and more. However, on Earth we cannot go back inde nitely, for much of the evidence of the very earliest days has been lost.
The book provides an introduction to the mechanics of composite materials, written for graduate students and practitioners in industry. It examines ways to model the impact event, to determine the size and severity of the damage and discusses general trends observed during experiments.
This book presents technologies and solutions related to the test and launch control of rockets and other vehicles, and offers the first comprehensive and systematic introduction to the contributions of the Chinese Long March (Chang Zheng in Chinese, or abbreviated as CZ) rockets in this field. Moreover, it discusses the role of this technology in responsive, reliable, and economical access to space, which is essential for the competitiveness of rockets. The need for rapid development of the aerospace industry for both governmental and commercial projects is addressed. This book is a valuable reference resource for practitioners, and many examples and resources are included, not only from Chinese rockets but also from many other vehicles. It covers guidelines, technologies, and solutions on testing and launch control before rocket takeoff, covering equipment-level testing, system-level testing, simulation tests, etc.
This textbook provides a coherent and structured overview of fluid mechanics, a discipline concerned with many natural phenomena and at the very heart of the most diversified industrial applications and human activities. The balance between phenomenological analysis, physical conceptualization and mathematical formulation serve both as a unifying educational marker and as a methodological guide to the three parts of the work. The thermo-mechanical motion equations of a homogeneous single-phase fluid are established, from which flow models (perfect fluid, viscous) and motion classes (isovolume, barotropic, irrotational, etc.) are derived. Incompressible, potential flows and compressible flows, both in an isentropic evolution and shock, of an ideal inviscid fluid are addressed in the second part. The viscous fluid is the subject of the last one, with the creeping motion regime and the laminar, dynamic and thermal boundary layer. Historical perspectives are included whenever they enrich the understanding of modern concepts. Many examples, chosen for their pedagogical relevance, are dealt with in exercises. The book is intended as a teaching tool for undergraduate students, wishing to acquire a first command of fluid mechanics, as well as graduates in advanced courses and engineers in other fields, concerned with completing what is sometimes a scattered body of knowledge.
General Aviation Aircraft Design, Second Edition, continues to be the engineer's best source for answers to realistic aircraft design questions. The book has been expanded to provide design guidance for additional classes of aircraft, including seaplanes, biplanes, UAS, high-speed business jets, and electric airplanes. In addition to conventional powerplants, design guidance for battery systems, electric motors, and complete electric powertrains is offered. The second edition contains new chapters: Thrust Modeling for Gas Turbines Longitudinal Stability and Control Lateral and Directional Stability and Control These new chapters offer multiple practical methods to simplify the estimation of stability derivatives and introduce hinge moments and basic control system design. Furthermore, all chapters have been reorganized and feature updated material with additional analysis methods. This edition also provides an introduction to design optimization using a wing optimization as an example for the beginner. Written by an engineer with more than 25 years of design experience, professional engineers, aircraft designers, aerodynamicists, structural analysts, performance analysts, researchers, and aerospace engineering students will value the book as the classic go-to for aircraft design.
Approx.190 pages |
![]() ![]() You may like...
Toe by Toe - A Highly Structured…
Keda Cowling, Harry Cowling
Paperback
![]() R1,049 Discovery Miles 10 490
Birds Of Greater Southern Africa
Keith Barnes, Terry Stevenson, …
Paperback
![]()
A Modern Guide to Public Policy
Giliberto Capano, Michael Howlett
Hardcover
R3,660
Discovery Miles 36 600
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
|