![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
China Satellite Navigation Conference (CSNC 2021) Proceedings presents selected research papers from CSNC 2021 held during 22nd-25th May, 2021 in Nanchang, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2021 which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
This book was developed using material from teaching courses on fluid mechanics, high-speed flows, aerodynamics, high-enthalpy flows, experimental methods, aircraft design, heat transfer, introduction to engineering, and wind engineering. It precisely presents the theoretical and application aspects of the terms associated with these courses. It explains concepts such as cyclone, typhoon, hurricane, and tornado, by highlighting the subtle difference between them. The text comprehensively introduces the subject vocabulary of fluid mechanics for use in courses in engineering and the physical sciences. This book * Presents the theoretical aspects and applications of high-speed flows, aerodynamics, high-enthalpy flows, and aircraft design. * Provides a ready reference source for readers to learn essential concepts related to flow physics, rarefied, and stratified flows. * Comprehensively covers topics such as laser Doppler anemometer, latent heat of fusion, and latent heat of vaporisation. * Includes schematic sketches and photographic images to equip the reader with a better view of the concepts. This is ideal study material for senior undergraduate and graduate students in the fields of mechanical engineering, aerospace engineering, flow physics, civil engineering, automotive engineering, and manufacturing engineering.
NASA-SP-2009-4802. NASA History Series. Edited by Steven J. Dick and Mark L. Lupisella. Authors with diverse backgrounds in science, history, anthropology, and more, consider culture in the context of the cosmos. How does our knowledge of cosmic evolution affect terrestrial culture? Conversely, how does our knowledge of cultural evolution affect our thinking about possible cultures in the cosmos? Are life, mind, and culture of fundamental significance to the grand story of the cosmos that has generated its own self-understanding through science, rational reasoning, and mathematics? Book includes bibliographical references and an index.
This book presents papers surrounding the extensive discussions that took place from the 'Variational Analysis and Aerospace Engineering' workshop held at the Ettore Majorana Foundation and Centre for Scientific Culture in 2015. Contributions to this volume focus on advanced mathematical methods in aerospace engineering and industrial engineering such as computational fluid dynamics methods, optimization methods in aerodynamics, optimum controls, dynamic systems, the theory of structures, space missions, flight mechanics, control theory, algebraic geometry for CAD applications, and variational methods and applications. Advanced graduate students, researchers, and professionals in mathematics and engineering will find this volume useful as it illustrates current collaborative research projects in applied mathematics and aerospace engineering.
This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.
This open access book presents the findings of Collaborative Research Center Transregio 40 (TRR40), initiated in July 2008 and funded by the German Research Foundation (DFG). Gathering innovative design concepts for thrust chambers and nozzles, as well as cutting-edge methods of aft-body flow control and propulsion-component cooling, it brings together fundamental research undertaken at universities, testing carried out at the German Aerospace Center (DLR) and industrial developments from the ArianeGroup. With a particular focus on heat transfer analyses and novel cooling concepts for thermally highly loaded structures, the book highlights the aft-body flow of the space transportation system and its interaction with the nozzle flow, which are especially critical during the early phase of atmospheric ascent. Moreover, it describes virtual demonstrators for combustion chambers and nozzles, and discusses their industrial applicability. As such, it is a timely resource for researchers, graduate students and practitioners.
A manned mission to Mars is faced with challenges and topics that may not be obvious but of great importance and challenging for such a mission. This is the first book that collects contributions from scholars in various fields, from astronomy and medicine, to theology and philosophy, addressing such topics. The discussion goes beyond medical and technological challenges of such a deep-space mission. The focus is on human nature, human emotions and biases in such a new environment. The primary audience for this book are all researchers interested in the human factor in a space mission including philosophers, social scientists, astronomers, and others. This volume will also be of high interest for a much wider audience like the non-academic world, or for students.
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.
1) Demonstrates alternative definitions of the fuzzy safety factor 2) Explains properties of materials and their structural deterioration 3) Covers optimal probabilistic design 4) Aids the reader in solving problems associated with uncertainty
This book gathers the outcomes of the second ECCOMAS CM3 Conference series on transport, which addressed the main challenges and opportunities that computation and big data represent for transport and mobility in the automotive, logistics, aeronautics and marine-maritime fields. Through a series of plenary lectures and mini-forums with lectures followed by question-and-answer sessions, the conference explored potential solutions and innovations to improve transport and mobility in surface and air applications. The book seeks to answer the question of how computational research in transport can provide innovative solutions to Green Transportation challenges identified in the ambitious Horizon 2020 program. In particular, the respective papers present the state of the art in transport modeling, simulation and optimization in the fields of maritime, aeronautics, automotive and logistics research. In addition, the content includes two white papers on transport challenges and prospects. Given its scope, the book will be of interest to students, researchers, engineers and practitioners whose work involves the implementation of Intelligent Transport Systems (ITS) software for the optimal use of roads, including safety and security, traffic and travel data, surface and air traffic management, and freight logistics.
Updated to integrated modular avionics, and cabin and aircraft information systems Ideal for students gaining EASA Part 66 licences, particularly the B1 or B2 licence One of Routledge's core aircraft maintenance titles.
This book compares the cultural politics of the U.S. space and Antarctic programs during the Cold War. It analyzes how culturally salient terms, especially the nationalist motif of the frontier, were used to garner public support for these strategic initiatives and, more generally, United States internationalism during this period.
Performance calculations can be classified into three main types: lift, thrust and slope. Firstly, since the lift profile is known and unmodifiable from the time an aircraft is designed, the mass at a given speed or the speed at a given mass must be determined. Then, once the thrust of the engines and the mass are known, the slope must be calculated. Finally, once the slope is known (for example, level flight) as well as the mass, it is necessary to deduce the thrust; this is the position of the throttle control lever that ensures balance. The corresponding consumption must then be defined. Performance specifications for customer aircraft, such as manoeuvrability, fuel consumption, maintenance, safety and testability, have become ever more demanding with each generation of equipment. Major technical advances have been required: wing profiles, engines, materials to reduce mass, etc. This book presents a theoretical approach to flight mechanics that makes it possible to grasp the subject and links it with the empirical approach of manufacturers.
This book explores creative solutions to the unique challenges inherent in crafting livable spaces in extra-terrestrial environments. The goal is to foster a constructive dialogue between the researchers and planners of future (space) habitats. The authors explore the diverse concepts of the term Habitability from the perspectives of the inhabitants as well as the planners and social sciences. The book provides an overview of the evolution and advancements of designed living spaces for manned space craft, as well as analogue research and simulation facilities in extreme environments on Earth. It highlights how various current and future concepts of Habitability have been translated into design and which ones are still missing. The main emphasis of this book is to identify the important factors that will provide for well-being in our future space environments and promote creative solutions to achieving living spaces where humans can thrive. Selected aspects are discussed from a socio-spatial professional background and possible applications are illustrated. Human factors and habitability design are important topics for all working and living spaces. For space exploration, they are vital. While human factors and certain habitability issues have been integrated into the design process of manned spacecraft, there is a crucial need to move from mere survivability to factors that support thriving. As of today, the risk of an incompatible vehicle or habitat design has already been identified by NASA as recognized key risk to human health and performance in space. Habitability and human factors will become even more important determinants for the design of future long-term and commercial space facilities as larger and more diverse groups occupy off-earth habitats. The book will not only benefit individuals and organizations responsible for manned space missions and mission simulators, but also provides relevant information to designers of terrestrial austere environments (e.g., remote operational and research facilities, hospitals, prisons, manufacturing). In addition it presents general insights on the socio-spatial relationship which is of interest to researchers of social sciences, engineers and architects.
After surviving three years flying the mighty Phantom, the RAF's greatest and most terrifying fighter (for those in the cockpit), Tug Wilson was sent to RAF Brawdy in Pembrokeshire and then to RAF Valley on the Isle of Anglesey to teach the flying skills he probably should have known when posted on the Cold War front line. At Valley, Wilson quickly discovered that being an instructor was much more than just teaching: it was falling out of the sky after a stall at just 300 feet, inches from pulling the ejection-seat handle; it was zooming into cloud at low level knowing there's a hill somewhere straight ahead; it was suffering the horror of nearly killing your student by chasing him too hard in air combat; it was being a mentor, a father figure, a best friend and a worst enemy if needs be; and it was the joy of guiding the struggling but hard-working ones away from the brink of being 'chopped' and towards their dream of becoming confident aviators, ready to join an operational squadron. Confessions of a Flying Instructor is a gritty, unvarnished, highly entertaining account of what it was like to be a tactics and flying instructor on an RAF squadron in the early 1990s-the banter, the egos, the insecurities, the cock-ups, the tragedies, the friendships, the triumphs, and the pure, unadulterated exhilaration of raging around the sky in a Hawk T1A day after day. Have you ever wondered what a fast-jet pilot needs to go through to learn how to win in air combat? Or how to cheat in dogfighting, for that matter? This book is an intimate, revelatory memoir of an often overlooked but intrinsic aspect of the RAF.
Provides comprehensive coverage of recent advances in combustion technology Explains definite concepts about the design and development in combustion systems Captures developments relevant for aerospace area including gel propellant, aluminium based propellants, gasification and gas turbine Aims to introduce the combustion system in different industries Expounds novel combustion systems with reference to pertinent renewable technologies
This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hulsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred images, most of which are original and have been accessed by detailed searches in the archives.
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.
Renowned airline business visionary and sage adviser, Nawal Taneja, offers insights, inspiration, and practical measures, based on his extensive experience and practices in other businesses, on how high-level airline decision makers can extend the boundaries of their businesses to adapt to the dramatically changing lifestyles of consumers, now accelerated by the global pandemic
Provides a quick and easy insight to the air transport system. Written in the easy understandable language and style of expression. Intended for the readership with different educational backgrounds and levels.
This book analyzes the commercial space activities and commercialization processes of the last fifteen years and maps the future challenges that NewSpace companies will face developing commercial space markets. What is new and what has happened in these markets up till now? Is there a business case for private companies for commercial space? What are the targeted commercial space markets? Who are the future customers for commercial space transportation markets? How can NewSpace companies attract investors? Can we learn lessons from traditional space industries or other companies in other areas? In what way have the last fifteen years made a difference in the evolution of space markets? Is there a future for in-situ resource mining, space debris services, in-orbit satellite servicing and sub-orbital transportation? What are the lessons learned from ISS commercialization? In addition the reader will find a synopsis of several space transportation programs, commercial space markets, future Moon and Mars missions, in-situ resource exploitation concepts, space debris mitigation projects and sub-orbital commercial markets. Major lessons learned are identified, related to the attraction of first time customers and long term R&D funding, managing technological and market risks and developing new markets and applications.
Aerodynamics for Engineering Students, Seventh Edition, is one of the world's leading course texts on aerodynamics. It provides concise explanations of basic concepts, combined with an excellent introduction to aerodynamic theory. This updated edition has been revised with improved pedagogy and reorganized content to facilitate student learning, and includes new or expanded coverage in several important areas, such as hypersonic flow, UAV's, and computational fluid dynamics.
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:* comprehensive review of the most popular theories of plates and shells,* relations between three-dimensional theories and two-dimensional ones,* presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),* modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,* applications in modeling of non-classical objects like, for example, nanostructures,* presentation of actual numerical tools based on the finite element approach. |
You may like...
Knowledge and Project Management - A…
Meliha Handzic, Antonio Bassi
Hardcover
R3,838
Discovery Miles 38 380
Assessing Transformation Products of…
Joerg E. Drewes, Thomas Letzel
Hardcover
R4,835
Discovery Miles 48 350
Dungeons & Dragons: Bag of Holding…
Brenna Dinon, Dungeons & Dragons
Paperback
|