![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
A concise volume exploring the basic fundamentals of modern laser communication systems, this book provides comprehensive information from a system designer's point of view. The book provides a thorough review of history, architectures, design methodologies, optical design guidelines, and tracking and communication processes. It explains exactly how to design a laser communication system and its potential applications.
Evaluation copies are available. Please contact [email protected]. Provide the course number, number of students and present textbook used. Introduction to Avionic Systems, Second Edition explains the principles and theory of modern avionic systems and how they are implemented with current technology for both civil and military aircraft. The systems are analysed mathematically, where appropriate, so that the design and performance can be understood. The book covers displays and man-machine interaction, aerodynamics and aircraft control, fly-by-wire flight control, inertial sensors and attitude derivation, navigation systems, air data and air data systems, autopilots and flight management systems, avionic systems integration and unmanned air vehicles. About the Author. Dick Collinson has had "hands-on" experience of most of the systems covered in this book and, as Manager of the Flight Automation Research Laboratory of GEC-Marconi Avionics Ltd. (now part of BAE Systems Ltd.), led the avionics research activities for the company at Rochester, Kent for many years. He was awarded the Silver Medal of the Royal Aeronautical Society in 1989 for his contribution to avionic systems research and development.
Aviation networks play a critical role in the success of today's airlines and airports. This book provides insight on all aspects of modern network strategies and structures, ranging from market research to hub design, operations, organization, alliances, benchmarking, and antitrust issues. Considering both the airline and the airport perspectives, the book explains the economics of connectivity or productivity-driven hub structures through basic mathematics, which helps the reader to comprehend the structural strengths and weaknesses of aviation networks. More than 100 charts help clarify the topics at hand.
This book provides a detailed overview of the theory of analytical
and experimental modal analysis and its applications. Modal
Analysis is the processes of determining the inherent dynamic
characteristics of any system and using them to formulate a
mathematical model of the dynamic behavior of the system. In the
past two decades it has become a major technological tool in the
quest for determining, improving and optimizing dynamic
characteristics of engineering structures.
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, shock-boundary-layer interaction and aeroelasticity.
This book collects selected papers from the 28th Conference of Spacecraft TT&C Technology in China held on November 8-10, 2016. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of "Openness, Integration and Intelligent Interconnection". To meet requirements of new space endeavors, development of spacecraft instrumentation systems have to follow an open concept and approach in China. An open spacecraft instrumentation system encompasses integrated development of different types of services, integration of disciplines and specialties, intelligent links, and more scientific and intelligent information interface technology. Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book.
The book focuses on the orbital dynamics and mission trajectory (transfer or target trajectory) design of low-energy flight in the context of modern astrodynamics. It investigates various topics that either offer new methods for solving classical problems or address emerging problems that have yet to be studied, including low-thrust transfer trajectory design using the virtual gravity field method; transfer in the three-body system using invariant manifolds; formation flying under space-borne artificial magnetic fields; and the orbital dynamics of highly irregular asteroids. It also features an extensive study of the orbital dynamics in the vicinity of contact binary asteroids, including the 1:1 ground-track resonance, the equilibrium points and their stability, and the third-order analytical solution of orbital motion in the vicinity of the non-collinear equilibrium point. Given its breadth of coverage, the book offers a valuable reference guide for all engineers and researchers interested in the potential applications of low-energy space missions.
Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedingsbased on the results and recommendations from the reviewers.
Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.
This book discusses all spacecraft attitude control-related topics: spacecraft (including attitude measurements, actuator, and disturbance torques), modeling, spacecraft attitude determination and estimation, and spacecraft attitude controls. Unlike other books addressing these topics, this book focuses on quaternion-based methods because of its many merits. The book lays a brief, but necessary background on rotation sequence representations and frequently used reference frames that form the foundation of spacecraft attitude description. It then discusses the fundamentals of attitude determination using vector measurements, various efficient (including very recently developed) attitude determination algorithms, and the instruments and methods of popular vector measurements. With available attitude measurements, attitude control designs for inertial point and nadir pointing are presented in terms of required torques which are independent of actuators in use. Given the required control torques, some actuators are not able to generate the accurate control torques, therefore, spacecraft attitude control design methods with achievable torques for these actuators (for example, magnetic torque bars and control moment gyros) are provided. Some rigorous controllability results are provided. The book also includes attitude control in some special maneuvers, such as orbital-raising, docking and rendezvous, that are normally not discussed in similar books. Almost all design methods are based on state-spaced modern control approaches, such as linear quadratic optimal control, robust pole assignment control, model predictive control, and gain scheduling control. Applications of these methods to spacecraft attitude control problems are provided. Appendices are provided for readers who are not familiar with these topics.
Aircraft performance is one of the key aspects of the aircraft industry. Starting with the consideration that performance theory is the defining factor in aircraft design, the author then covers the measurement of performance for the certification, management and operation of aircraft. This practical book discusses performance measures which relate to airworthiness certificates (a legal requirement), as well as those needed when compiling the aircraft performance manual for the aircraft. In addition, operational performance is covered, including the financial considerations required by airlines to ensure maximisation of commercial return. Available in North and South America from the AIAA, 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191, USA
This monograph presents a new analytical approach to the design of proportional-integral-derivative (PID) controllers for linear time-invariant plants. The authors develop a computer-aided procedure, to synthesize PID controllers that satisfy multiple design specifications. A geometric approach, which can be used to determine such designs methodically using 2- and 3-D computer graphics is the result. The text expands on the computation of the complete stabilizing set previously developed by the authors and presented here. This set is then systematically exploited to achieve multiple design specifications simultaneously. These specifications include classical gain and phase margins, time-delay tolerance, settling time and H-infinity norm bounds. The results are developed for continuous- and discrete-time systems. An extension to multivariable systems is also included. Analytical Design of PID Controllers provides a novel method of designing PID controllers, which makes it ideal for both researchers and professionals working in traditional industries as well as those connected with unmanned aerial vehicles, driverless cars and autonomous robots.
This book describes systematically the theory and technology of the precision forming of large, complex and thin-walled superalloy castings for aircraft engines, covering all the important basic aspects of the manufacturing process, including process design, wax pattern, ceramic molds, casting and solidification, heat treatment, repair casting and dimension precision control. The correlation of casting defects, structural characteristics and performance of castings is revealed through a range of tests. It also discusses the latest technologies and advances in this field - such as imaging the solidification process by means of synchrotron radiography, 3D computerized tomography and reconstruction of microporosity defects, analysis and diagnosis of error sources for dimension over-tolerance and adjusted pressure casting technology - which are of particular interest. Providing essential insights, the book offers a valuable guide to the design and manufacture of superalloy casting parts for aircraft engines.
This book provides different engineering, management, economic solutions and methodologies regarding sustainable aviation, giving readers a great sense of how sustainable aviation works at the "systems" level. The aviation industry is one of the fastest growing in the world and can make a positive contribution to sustainability. This book presents environmental policies and their application to the aviation industry and evaluates solutions provided to address pollution. Chapters discuss novel technologies that the aviation industry can apply to reduce its environmental impact and become more energy efficient.
Approx.190 pages
These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
An introduction to orbital mechanics and spacecraft attitude dynamics Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author a noted expert in the field covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples. This important book: Covers space dynamics with a systematic and comprehensive approach Is designed to be a practical text filled with real-world examples Contains information on the most current applications Includes up-to-date topics from orbital perturbations to gravity- gradient stabilization Offers a deep understanding of space dynamics often lacking in other textbooks Written for undergraduate and graduate students and professionals in aerospace engineering, Foundations of Space Dynamics offers an introduction to the most current information on orbital mechanics and dynamics.
Humans and space When faced with the issue of space exploration, one generally has an idea of the ?elds of study and disciplines that are involved: technology, physics and chemistry, robotics, astronomy and planetary science, space biology and medicine, disciplines which are usually referred to as the ?sciences?. In recent discussions, the human element of space exploration has attracted more and more the interest of the space sciences. As a consequence, adjacent disciplines have gained in relevance in space exploration and space research, in times when human space ?ights are almost part of everyday life. These disciplines include psychology and sociology, but also history, philosophy, anthropology, cultural studies, political sciences and law. The cont- bution of knowledge in these ?elds plays an important role in achieving the next generation of space exploration, where humans will resume exploring the Moon and, eventually, Mars, and wherespacetourism isbeginningtobedeveloped. With regard to technology, one might soon be prepared for this. Much less is this the case with space exploration by humans, rather than by robots. Robotic explorations to other planets across the solar system have developed in the past 50 years, since the beginning of the ?space age? with the presence of humans in nearby space and the landing on the Moon. Space exploration is now not only focused on technological achievements, asitsdevelopmentalsohassocial, culturalandeconomicimpacts. This makes human space exploration a topic to address in a cross-disciplinary mann
The field of Large Eddy Simulation (LES) and hybrids is a
vibrant research area. This book runs through all the potential
unsteady modelling fidelity ranges, from low-order to LES. The
latter is probably the highest fidelity for practical aerospace
systems modelling. Cutting edge new frontiers are defined. This work has relevance to the general field of CFD and LES and
to a wide variety of non-aerospace aerodynamic systems (e.g. cars,
submarines, ships, electronics, buildings). Topics treated include
unsteady flow techniques; LES and hybrids; general numerical
methods; computational aeroacoustics; computational aeroelasticity;
coupled simulations and turbulence and its modelling (LES, RANS,
transition, VLES, URANS). The volume concludes by pointing forward
to future horizons and in particular the industrial use of LES. The
writing style is accessible and useful to both academics and
industrial practitioners.
This book simulates the complete trajectories (flight and subsequent ground run) of golf shots using the aerodynamic and material properties of golf balls, and establish the significance of wind's impact on gameplay. It also presents insight into how physical parameters like launch conditions (speed, angle and spin-rate) and wind conditions affect the trajectory of a golf ball. It discusses the specific effects of wind on the flight trajectory and explore the consequences of effect of wind direction; impact of golf club selection on the wind-induced deviation; strategies and their effectiveness to counter the diversion due to wind; and the sensitivity of the trajectory to aerodynamic characteristics of golf balls. Furthermore, the impact of wind on a player's strategy is elucidated with cases studies on the renowned holes of three golf courses: (i) Hole 17, TPC Sawgrass, (ii) Hole 8, Muirfield Golf Club, and (iii) Hole 18, Pebble beach Golf links. It presents an integrated mathematical model and quantitative data on ball trajectory accompanied by insights and illustrations for players, golf-course designers, ball manufacturers, scientific community, and golf enthusiasts. This book will be useful for researchers and professionals in the fields of aerodynamics engineering, sports science and physics. Additionally, this book will be a good read for golf players and coaches, golf-course designers, as well as golf-ball manufacturers.
|
![]() ![]() You may like...
The Accidental Mayor - Herman Mashaba…
Michael Beaumont
Paperback
![]()
Techno-Sapiens in a Networked Era
Ryan K Bolger, Kutter Callaway
Hardcover
Beyond Agile - How To Run Faster…
Andrew Walker, Paul Scott
Hardcover
|