Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
This book analyzes the commercial space activities and commercialization processes of the last fifteen years and maps the future challenges that NewSpace companies will face developing commercial space markets. What is new and what has happened in these markets up till now? Is there a business case for private companies for commercial space? What are the targeted commercial space markets? Who are the future customers for commercial space transportation markets? How can NewSpace companies attract investors? Can we learn lessons from traditional space industries or other companies in other areas? In what way have the last fifteen years made a difference in the evolution of space markets? Is there a future for in-situ resource mining, space debris services, in-orbit satellite servicing and sub-orbital transportation? What are the lessons learned from ISS commercialization? In addition the reader will find a synopsis of several space transportation programs, commercial space markets, future Moon and Mars missions, in-situ resource exploitation concepts, space debris mitigation projects and sub-orbital commercial markets. Major lessons learned are identified, related to the attraction of first time customers and long term R&D funding, managing technological and market risks and developing new markets and applications.
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.
This book is useful both for those who want to get initial information on the measurement of the antenna parameters, and for specialists directly involved in the experimental determination of the antenna parameters from the results of measuring the amplitude-phase distribution in the near zone of the antennas. Currently, the near-field method is the most common one for antenna measurements. In most books, an academic approach is given to the issue under consideration and it is difficult to use them for the direct organization of measurements. In many others, specific narrow issues are considered that are accessible to understanding only by highly qualified engineers/readers. The purpose of this book is to get rid of the above disadvantages by offering the reader a more accessible exposition and formulas by which appropriate computer programs can be written with minimal effort. The contents of this book allow interested specialists to be not only users of the near-field measuring facilities, but also help in understanding the principles of their work. This book is intended for engineers and specialists whose activities are related to experimental testing of radio characteristics of complex antenna systems, especially near-field measurements, and is also useful as a textbook for senior students in the field of "radioelectronics" and "radiophysics."
This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft's structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relevant design issues and provides a relevant case study for modeling and control engineers in many adjacent disciplines and applications. Modeling and Control for a Blended Wing Body Aircraft presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hulsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred images, most of which are original and have been accessed by detailed searches in the archives.
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:* comprehensive review of the most popular theories of plates and shells,* relations between three-dimensional theories and two-dimensional ones,* presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),* modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,* applications in modeling of non-classical objects like, for example, nanostructures,* presentation of actual numerical tools based on the finite element approach.
"Bio-inspired Computation in Unmanned Aerial Vehicles" focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aerospace Technology and Astronautics, especially those interested in artificial intelligence and Unmanned Aerial Vehicles. Professor Haibin Duan and Dr. Pei Li, both work at Beihang University (formerly Beijing University of Aeronautics & Astronautics, BUAA). Prof Duan's academic website is: http: //hbduan.buaa.edu.cn
This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
At the intersection of astronautics, computer science, and social science, this book introduces the challenges and insights associated with computer simulation of human society in outer space, and of the dynamics of terrestrial enthusiasm for space exploration. Never before have so many dynamic representations of space-related social systems existed, some deeply analyzing the logical implications of social-scientific theories, and others open for experience by the general public as computer-generated virtual worlds. Fascinating software ranges from multi-agent artificial intelligence models of civilization, to space-oriented massively multiplayer online games, to educational programs suitable for schools or even for the world's space exploration agencies. At the present time, when actual forays by humans into space are scarce, computer simulations of space societies are an excellent way to prepare for a renaissance of exploration beyond the bounds of Earth.
This book presents contributions to the 19th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book's primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.
Race to the Moon is a suspenseful thriller about the 30-year clash between the United States and the Soviet Union to be the first to put a man on the moon. This true account is heavy with intrigue, espionage, and controversy. Beginning with a 1961 pledge by President John F. Kennedy to plant the Stars and Stripes on the lunar surface by the end of the decade, the story flashes back to the first days of World War II. At that time, England was tipped off by a high Nazi official that the Third Reich was developing revolutionary long-range rockets. This same source clandestinely provided documents that shocked British scientists: The Germans were 25 years ahead of England and the United States in rocket development! And then, in September 1944, 60-foot-long V-2 rockets, for which there was no defense, began raining down on London, causing enormous destruction and loss of life. Even while the fighting was still raging in Germany in the spring of 1945, a handful of young U.S. Army officers scored a colossal coup: They connived to steal 100 of the huge V-2s that had been found in an underground factory. They were dismantled and slipped by train out of Germany, destination White Sands, New Mexico. Then began a no-holds-barred search for German rocket scientists in the chaos of a defeated Third Reich, with the Americans and British on one side and the Russians on the other. Within weeks of the close of the war, Wernher von Braun and 126 of his rocket team members were corraled, shipped to the United States, and began working secretly on missile development. At the same time, the Soviets literally kidnapped other German rocket scientists and sent them to Russia to continue their space work. In the years ahead, Wernher von Braun and his German rocket team, nearly all of whom became naturalized citizens of the United States, collaborated with American scientists to overcome enormous space achievements by the Soviets--and bungling by Washington politicians--to send Neil Armstrong scampering about on the moon in 1969.
This book focuses on systems engineering, systems thinking, and how that thinking can be learned in practice. It describes a novel analytical framework based on activity theory for understanding how systems thinking evolves and how it can be improved to support multidisciplinary teamwork in the context of system development and systems engineering. This method, developed using data collected over four years from three different small space systems engineering organizations, can be applied in a wide variety of work activities in the context of engineering design and beyond in order to monitor and analyze multidisciplinary interactions in working teams over time. In addition, the book presents a practical strategy called WAVES (Work Activity for a Evolution of Systems engineering and thinking), which fosters the practical learning of systems thinking with the aim of improving process development in different industries. The book offers an excellent resource for researchers and practitioners interested in systems thinking and in solutions to support its evolution. Beyond its contribution to a better understanding of systems engineering, systems thinking and how it can be learned in real-world contexts, it also introduce a suitable analysis framework that helps to bridge the gap between the latest social science research and engineering research.
China Satellite Navigation Conference (CSNC) 2013 Proceedings presents selected research papers from CSNC2013, held on 15-17 May in Wuhan, China. The theme of CSNC2013 is: BeiDou Application: Opportunities and Challenges. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou system especially. They are divided into 9 topics to match the corresponding sessions in CSNC2013, which broadly covered key topics in GNSS. Readers can learn about the BeiDou system and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/BeiDou system, and the Academician of Chinese Academy of Sciences (CAS); JIAO Wenhai is a researcher at China Satellite Navigation Office; WU Haitao is a professor at Navigation Headquarters, CAS; SHI Chuang is a professor at Wuhan University.
This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control.
The book describes the main findings of the EU-funded project IDIHOM (Industrialization of High-Order Methods - A Top-Down Approach). The goal of this project was the improvement, utilization and demonstration of innovative higher-order simulation capabilities for large-scale aerodynamic application challenges in the aircraft industry. The IDIHOM consortium consisted of 21 organizations, including aircraft manufacturers, software vendors, as well as the major European research establishments and several universities, all of them with proven expertise in the field of computational fluid dynamics. After a general introduction to the project, the book reports on new approaches for curved boundary-grid generation, high-order solution methods and visualization techniques. It summarizes the achievements, weaknesses and perspectives of the new simulation capabilities developed by the project partners for various industrial applications, and includes internal- and external-aerodynamic as well as multidisciplinary test cases.
This book is based on the findings, conclusions and recommendations of the Global Space Governance study commissioned by the 2014 Montreal Declaration that called upon civil society, academics, governments, the private sector, and other stakeholders to undertake an international interdisciplinary study. The study took three years to complete. It examines the drivers of space regulations and standards, key regulatory problems, and especially addresses possible improvements in global space governance. The world's leading experts led the drafting of chapters, with input from academics and knowledgeable professionals in the public and private sectors, intergovernmental organizations, and nongovernmental organizations from all the regions of the world with over 80 total participants. This book and areas identified for priority action are to be presented to the UN Committee on the Peaceful Uses of Outer Space and it is hoped will be considered directly or indirectly at the UNISPACE+50 event in Vienna, Austria, in 2018. The report, a collective work of all the contributors, includes objective analysis and frank statements expressed without pressure of political, national, and occupational concerns or interest. It is peer-reviewed and carefully edited to ensure its accuracy, preciseness, and readability. It is expected that the study and derivative recommendations will form the basis for deliberations and decisions at international conferences and meetings around the world on the theme of global space governance. This will hopefully include future discussion at the UN Committee on the Peaceful Uses of Outer Space.
This book collects selected papers from the 27th Conference of Spacecraft TT&C Technology in China held in Guangzhou on November 9-12, 2014. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of "Wider Space for TT&C". To meet requirements of new space endeavors, especially China's deep-space programs, China's spacecraft TT&C systems shall "go farther, measure more accurately and control better with higher efficacy". Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book.
This textbook provides students and the broader aviation community with a complete, accessible guide to the subject of human factors in aviation. It covers the history of the field before breaking down the physical and psychological factors, organizational levels, technology, training, and other pivotal components of a pilot and crew's routine work in the field. The information is organized into easy-to-digest chapters with summaries and exercises based on key concepts covered, and it is supported by more than 100 full-color illustrations and photographs. All knowledge of human factors required in aviation university studies is conveyed in a concise and casual manner, through the use of helpful margin notes and anecdotes that appear throughout the text.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage. |
You may like...
The Wright Brothers - The Dramatic Story…
David McCullough
Paperback
(2)
The Entomologist's Record and Journal of…
James William 1858-1911 Tutt
Hardcover
R860
Discovery Miles 8 600
Air Pilot's Manual - Flying Training…
Dorothy Saul-Pooley, Esther Law
Paperback
High-Wing Aircraft Visualized Flight…
Asa Test Prep Board
Spiral bound
Air Law - A Comprehensive Sourcebook for…
Philippe-Joseph Salazar
Paperback
|