![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
This book collects selected papers from the 27th Conference of Spacecraft TT&C Technology in China held in Guangzhou on November 9-12, 2014. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of "Wider Space for TT&C". To meet requirements of new space endeavors, especially China's deep-space programs, China's spacecraft TT&C systems shall "go farther, measure more accurately and control better with higher efficacy". Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book.
We are the first species with the ability to leave planet Earth and expand the horizons of existence into the infinite realm of the universe. Humanity has been working, learning and building toward this accomplishment throughout history. Those who live and work in space will be no different from their predecessors who left ancient homelands to venture into the unknown wilderness. But to travel and work in space, one must not only know the physical characteristics of the space environment, but also something about the human beings involved. Living in Space explains: -Technology necessary for staying happy, healthy and alive in space. - Effects of acceleration on the human body - The long term affects of living in zero-g conditions - The most harmful forms of ionizing radiation for humans - Nutrition and Sanitation - Basic problems of working in space. The people who go into space to live and work are setting the foundation for humanity s future."
This book presents contributions to the 19th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book's primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the application of this methodology has yielded the observed anomalous acceleration. This marks a major achievement, given that this problem remained unsolved for more than a decade. For the second anomaly, the flyby anomaly, a tiny glitch in the velocity of spacecraft that perform gravity assisting maneuvers on Earth, no definitive answer is put forward; however a quite promising strategy for examining the problem is provided and a new mission is proposed. The proposal largely consists in using the Galileo Navigational Satellite System to track approaching spacecraft, and in considering a small test body that approaches Earth from a highly elliptic trajectory.
Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems' inputs, states measurements, and restrictions on the interconnection topology between the aerial vehicles in the team are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers and industrial engineers from robotics, control engineering and aerospace communities. It also serves as a complementary reading for graduate students involved in research related to flying robotics, aerospace, control of under-actuated systems, and nonlinear control theory
The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on "Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2016)". The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.
The study of flight dynamics requires a thorough understanding of the theory of the stability and control of aircraft, an appreciation of flight control systems and a grounding in the theory of automatic control. Flight Dynamics Principles is a student focused text and provides easy access to all three topics in an integrated modern systems context. Written for those coming to the subject for the first time, the book provides a secure foundation from which to move on to more advanced topics such as, non-linear flight dynamics, flight simulation, handling qualities and advanced flight control. About the author: After graduating Michael Cook joined Elliott Flight Automation
as a Systems Engineer and contributed flight control systems design
to several major projects. Later he joined the College of
Aeronautics to research and teach flight dynamics, experimental
flight mechanics and flight control. Previously leader of the
Dynamics, Simulation and Control Research Group he is now retired
and continues to provide part time support. In 2003 the Group was
recognised as the Preferred Academic Capability Partner for Flight
Dynamics by BAE SYSTEMS and in 2007 he received a Chairman s Bronze
award for his contribution to a joint UAV research programme. New to this edition: Additional examples to illustrate the application of computational procedures using tools such as MATLAB(r), MathCad(r) and Program CC(r). Improved compatibility with, and more expansive coverage of the North American notational style. Expanded coverage of lateral-directional static stability, manoeuvrability, command augmentation and flight in turbulence. An additional coursework study on flight control design for an unmanned air vehicle (UAV).
The book sheds new lights on the evolution of Russian space activities with a focus on their strategy of international cooperation. This analysis is carried out in relation to the evolution of the domestic and international dynamics that have been impacting the country's direction in space, with the ultimate goal of providing an assessment on their impact for current and foreseeable Europe-Russia space relations. Russia has traditionally been one of the two main strategic partners for Europe in its space endeavor. Hitherto, long-standing cooperation has been nurtured between the two actors in various areas, from scientific research to space transportation and human spaceflight. In recent years, however, a number of endogenous and exogenous developments has triggered significant changes in Russia's space posture. These changes are evident in the adjustment of Russia's space policies and programmatic goals, in the restructuring of the domestic space industry as well as in the attitude towards international space partnerships.
This book covers the topics of theoretical principles, dynamics model and algorithm, mission analysis, system design and experimental studies of space nets system, aiming to provide an initial framework in this field and serve as a ready reference for those interested. Space nets system represents a forefront field in future development of aerospace technologies. However, it involves new challenges and problems such as nonlinear and distorted nets structure, complex rigid flexible coupling dynamics, orbital transfer of space flexible composite and dynamics control. Currently, no comprehensive books on space nets dynamics and design are available, so potential readers can get to know the working mechanism, dynamics elements, and mission design of the space nets system from a Chinese perspective.
For those involved with the design and analysis of electro-optical systems, the book outlines current and future ground, air and spacebourne applications of electro-optical systems. It describes their performance requirements and practical methods of achieving design objectives.
This book presents the most serious and comprehensive study, by far, of American public perceptions about the meaning of space exploration, analyzing vast troves of questionnaire data collected by many researchers and polling firms over a span of six decades and anchored in influential social science theories.It doesn't simply report the percentages who held various opinions, but employs sophisticated statistical techniques to answer profound questions and achieve fresh discoveries. Both the Bush and the Obama administrations have cut back severely on fundamental research in space science and engineering. Understanding better what space exploration means for citizens can contribute to charting a feasible but progressive course. Since the end of the Space Race between the US and the USSR, social scientists have almost completely ignored space exploration as a topic for serious analysis and this book seeks to revive that kind of contribution. The author communicates the insights in a lucid style, not only intelligible but interesting to readers from a variety of backgrounds."
Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.
|
You may like...
Labour Regulation and Development…
Shelley Marshall, Colin Fenwick
Hardcover
R4,321
Discovery Miles 43 210
Cleaning Up Your Mental Mess - 5 Simple…
Dr. Caroline Leaf
Paperback
(3)
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
(1)
|