![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.
The realms of aerospace and structural mechanics have been revolutionized due to a plethora of technological advances. These two important sectors most notably have been impacted by the advancement of nanotechnology and have introduced potential groundbreaking changes for lightweight, high strength, and improved electronic properties of nanomaterials. Nanotechnology in Aerospace and Structural Mechanics aims to provide a collection of innovative research on the latest development of materials and methods for designing smart and intelligent devices for use in the field of space research and structural mechanics. It provides a thorough study of the fabrication and control of mechanical systems required for the successful application of nanotechnology in aerospace and structural engineering. While highlighting topics including nanomaterial properties, aerospace electronics, and polymer nanocomposites, this book is ideally designed for engineers, researchers, students, and academicians with interests in the fields of civil engineering, mechanical engineering, aerospace engineering, and nanoscience.
This book includes a selection of 30 reviewed and enhanced manuscripts published during the 14th SpaceOps Conference held in May 2016 in Daejeon, South Korea. The selection was driven by their quality and relevance to the space operations community. The papers represent a cross-section of three main subject areas: * Mission Management - management tasks for designing, preparing and operating a particular mission. * Spacecraft Operations - preparation and implementation of all activities to operate a space vehicle (crewed and uncrewed) under all conditions. * Ground Operations - preparation, qualification, and operations of a mission dedicated ground segment and appropriate infrastructure including antennas, control centers, and communication means and interfaces. This book promotes the SpaceOps Committee's mission to foster the technical interchange on all aspects of space mission operations and ground data systems while promoting and maintaining an international community of space operations experts.
"Distinguished African Americans in Aviation and Space Science" offers brief, readable entries that describe the lives and careers of 80 men and 20 women who defied poverty and prejudice to excel in the fields of aviation and space exploration. Each essay begins with birth and death dates, educational institutions attended and degrees earned, positions held, and awards won. A short summary of the individual's contribution to aviation or space science is followed by a biographical narrative divided into three sections: Early Years, Higher Education, and Career Highlights. Often based on the authors' correspondence with the subjects themselves, or with family members, this illustrated volume provides the fullest and most accessible biographical information available for many of these figures.
For centuries it has been the desire of human beings to ?nd better and better materials to achieve a variety of bene?ts for the mankind. This has been in vogue from the stone-age. The recent revolution discovering Smart Materials and Fu- tionally Graded Materials is one of those attempts. These materials are inherently multi functionaland theyopenedup possibilities whichcouldnot beimaginedinthe past. Materials can take a particulartype of energystimulusas input andgeneratean output belonging to a different type of energy. Typical example has been materials on which a mechanical force can produce electrical output. We are in twenty?rst century where in materials Research will totally concentrate on these new concepts and exploit them for variety of applications. Structural Health Monitoring leading to safety of operationsis the primary applicationthe aerospace, mechanical, nuclear and civil engineers will be expecting from this research. The Micro- and Na- scale sensors and actuators form the basis for this technology and Departments of Science and Technology in all the countries are investing heavily on this highly potential ?eld. InIndia, thescienti?cgroupinthisareaisactiveforthepastdecade. Theyformed in 1999 a professional society named as Institute of Smart Structures & Systems (ISSS) which has been holding National and International seminars and also he- ing the government departments to fund research and development of relevance to this novel materials and structures. National Program on Smart Materials (NPSM) and the second phase program NPMASS are the consequences of these efforts.
An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The second level smoothes this set so that the generated paths are feasible given the vehicle's velocity and accelerations limits. The third level generates flyable, timed trajectories and the last one is the tracking controller that attempts to minimize the error between the robot measured trajectory and the reference trajectory. This hierarchy is reflected in thestructure and contentof the book. Topics treated are: Modelling, Flight Planning, Trajectory Design and Control. Finally, some actual projects are described in the appendix. This volume will prove useful for researchers and practitioners working in Robotics and Automation, Aerospace Technology, Control and Artificial Intelligence. "
Interstellar Travel: Propulsion, Life Support, Communications, and the Long Journey addresses the technical challenges that must be overcome to make such journeys possible. Leading experts in the fields of space propulsion, power, communication, navigation, crew selection, safety and health provide detailed information about state-of-the-art technologies and approaches for each challenge, along with possible methods based on real science and engineering. This book offers in-depth, up-to-date and realistic technical and scientific considerations in the pursuit of interstellar travel and will be an essential reference for scientists, engineers, researchers and academics working on, or interested in, space development and space technologies. With a renewed interest in space exploration and development evidenced by the rise of the commercial space sector and various governments now planning to send humans back to the moon and to Mars, there is also growing interest in taking the next steps beyond the solar system and to the ultimate destination – planets circling other stars. With the rapid growth in the number of known exoplanets, people are now asking how we might make journeys to visit them.
"Modeling, Control and Coordination of Helicopter Systems" provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems, providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved.
Summarizes the analysis and design of today's gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.
"AutomaticControl of Atmospheric and Space Flight Vehicles" is perhaps the firstbook on the market to present a unified and straightforwardstudyof the design and analysis of automatic control systems for both atmospheric and space flight vehicles.Covering basic control theory and design concepts, it is meantas a textbook for senior undergraduate and graduate students in moderncourses on flight control systems. In addition to the basics of flight control, this book covers a number ofupper-level topicsand will therefore be of interest not only to advanced students, but also toresearchers and practitioners in aeronautical engineering, applied mathematics, and systems/control theory."
Building Safe Systems in Aviation provides a single source for those who need to progress beyond current models of Crew Resource Management (CRM) to developing safe systems in critical industries. Although the primary focus is on airline pilots, the principles apply to all sectors of aviation, particularly maintenance and cabin crew, as well as other high-risk industries. It systematically sets out the context of CRM and safe systems, the conduct of training, the resources needed by the facilitator and the processes required for the measurement of outcomes. Part One reviews the development of the human factors/CRM domain and examines the concepts of risk and safety. Part Two, primarily for new instructors, gives a guide to training delivery and also considers non-classroom situations, the role of debriefing, facilitation and the design of human factors courses. Part Three examines the measurement of training effectiveness, the design and implementation of behavioural markers and standardizing assessors. It concludes by looking at some of the broader issues associated with the management of CRM. The book's readership includes those who design, deliver or manage CRM and safety-related training within airlines and other companies.
This volume contains the papers of a German Symposium dealing with research and project work in numerical and experimental aerodynamics and fluidmechanics for aerospace and other applications. Results are reported from universities, research-establishments and industry. It therefore gives a broad overview over the ongoing work in this field in Germany.
This textbook is designed for undergraduate students studying airspace engineering, as well as undergraduate and postgraduate students studying air transport management. It will also be very helpful for the training of air traffic control officers. The textbook does not require any prior (specialist) knowledge as it is an introduction to the Air Navigation Service Providers (ANSPs) business. There is very little literature available that gives a detailed appreciation of the complexities, potential risks and issues associated with the provision of air navigation services. The role of this textbook is to fill this significant gap with a comprehensive, in-depth study of the management principles related to Air Navigation Service Providers. This is particularly timely given recent ATC developments in Europe, USA, and New Zealand. Airlines and airports rely on the Air Navigation Service Providers (ANSPs) for the management of air traffic. Hence, Air Navigation Services (ANS) provision is considered as a core element for air transportation. This textbook addresses each of the Air Navigation Services' five broad categories of services provided to air traffic during all phases of operation: Air Traffic Management (ATM), Communication services, Navigation services and Surveillance services (CNS), Meteorological services for air navigation (MET), Aeronautical Information Services (AIS) and Search and Rescue (SAR). This textbook is designed for undergraduate students studying airspace engineering and undergraduate and postgraduate students studying air transport management. It will also be very helpful for the training of air traffic control officers. The textbook does not require any prior (specialist) knowledge as it is an introduction book to the Air Navigation Service Providers (ANSPs) business.
More frisbees are sold each year than baseballs, basketballs and footballs combined. Yet these familiar flying objects have subtle and clever aerodynamic and gyrodynamic properties which are only recently being documented by wind tunnel and other studies. In common with other rotating bodies discussed in this readily accessible book, they are typically not treated in textbooks of aeronautics and the literature is scattered in a variety of places. This book develops the theme of disc-wings and spinning aerospace vehicles in parallel. Since many of the examples are recreational, anyone who enjoys these activities will likely find it profitable and enjoyable. In addition to spinning objects of various shapes, several exotic manned aircraft with disc planforms have been proposed and a prototypes built - these include a Nazi 'secret weapon' and the De Havilland Avrocar, also discussed in the book. Boomerangs represent another category of spinning aerodynamic body whose behavior can only be understood by coupling aerodynamics with gyrodynamics. The narrative, supported by equations and graphs, explains how the shape and throw of a boomerang relates to its trajectory. The natural world presents still other examples, namely the samaras or 'seed-wings' of many tree species, which autorotate during their descent, like a helicopter whose engine has failed. The flight performance of these spinning wings directly affects the dispersal and thus the evolutionary competitiveness of the trees concerned. Samara-type configurations are also considered for instrumentation and other payload dispersal applications. In short, the book discusses a range of familiar, connected, but largely undeveloped, topics in an accessible, but complete, manner. From the reviews of the first edition: "In his fascinating book Spinning Flight, Ralph Lorenz provides a rich feast of ... examples of spinning bodies ... . The book is well organized ... . The discussion in the book ... should be accessible to readers with some elementary understanding of aerodynamic principles. For the expert, the book is full of open problems ... . Its scope is extensive ... . In this respect, there may be something for everyone within its attractively designed cover ... ." (H. K. Moffatt, Nature, Vol. 444, December, 2006) "If you liked physics at school, then this book is for you. It concerns itself with flying objects that spin through the air, and even tells you how to impress your friends with the biomechanics of Frisbees. ... there is plenty of information at all levels, and the book has a wealth of detail that only an aerospace engineer like Lorenz could have come up with." (Len Fisher, BBC Focus, February, 2007)
The articles in this volume present the state-of-the-art in noise prediction, modeling and measurement. The articles are partially based on class notes provided during the course Noise sources in turbulent shear flows', given at CISM on April 2011. The first part contains general concepts of aero acoustics, including vortex sound theory and acoustic analogies, in the second part particular emphasis is put into arguments of interest for engineers and relevant for aircraft design: jet noise, airfoil broadband noise, boundary layer noise (including interior noise and its control) and the concept of noise sources, their theoretical modeling and identification in turbulent lows. All these arguments are treated extensively with the inclusion of many practical examples and references to engineering applications.
This text provides an introduction to the avionic systems in a modern aircraft and is based on the author's 20 years experience in an avionics company. The fundamental principles and theory underlying these systems are explained at a systems engineering level. This book should be of interest to electronics, computer science, physics, and mathematics graduates entering avionics industry; avionic engineering under and post-graduates; and R&D and technical staff in avionic/aerospace industry.
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly. |
You may like...
Politics In My Blood - A Memoir
Kader Asmal, Adrian Hadland, …
Paperback
Permafrost Ecosystems - Siberian Larch…
Akira Osawa, Olga A. Zyryanova, …
Hardcover
R5,251
Discovery Miles 52 510
The SIRT Food Diet - The Revolutionary…
Aidan Goggins, Glen Matten
Paperback
(1)
|