![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.
China Satellite Navigation Conference (CSNC) 2015 Proceedings presents selected research papers from CSNC2015, held during 13th-15th May in Xian, China. The theme of CSNC2015 is Opening-up, Connectivity and Win-win. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2015, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/ BDS, and the academician of Chinese Academy of Sciences (CAS); LIU Jingnan is a professor at Wuhan University. FAN Shiwei is a researcher at China Satellite Navigation Office; LU Xiaochun is an academician of Chinese Academy of Sciences (CAS).
This book is like no other flight training book you've seen before. It is complete (from takeoff to landing) - not the usual boring flight manual - and it will make your day-to-day operations a breeze. You will pass any check ride successfully after studying my book thoroughly - GUARTANTEED - or your money back. I wrote this book solely as a way to help my fellow pilots. So order today!
The book presents a unified and well-developed approach to the dynamics of angular motions of rigid bodies subjected to perturbation torques of different physical nature. It contains both the basic foundations of the rigid body dynamics and of the asymptotic method of averaging. The rigorous approach based on the averaging procedure is applicable to bodies with arbitrary ellipsoids of inertia. Action of various perturbation torques, both external (gravitational, aerodynamical, solar pressure) and internal (due to viscous fluid in tanks, elastic and visco-elastic properties of a body) is considered in detail. The book can be used by researchers, engineers and students working in attitude dynamics of spacecraft.
This book shows how anthropology can provide an innovative perspective on the human movement into space. It examines adaptation to space on timescales of generations, rather than merely months or years, and uses evolutionary adaptation as a guiding theme. Employing the lessons of evolutionary adaptation, Principles of Extraterrestrial Anthropology recommends evolutionarily-sound strategies of space settlement, covering genetics at the organismal and population levels. The author organizes the concept of cultural adaptation to environments beyond Earth according to observed patterns in human adaptation on Earth. He uses original artwork and tables to help convey complex information in a form accessible to undergraduate and graduate students. Though primarily written to engage students interested in space settlement and exploration, who will eventually build a full anthropology of space settlement, Principles of Extraterrestrial Anthropology is engaging to anthropologists across sub-disciplines, as well as scholars interested in the human dimensions of space exploration and settlement. Just as the term exobiology was invented only a few decades ago to shape the field of space life studies, exoanthropology is outlined to assist in the perpetuation of Earth life through human space settlement.
The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.
This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen chain, tree, and isolated vertex and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATLAB(r)/Simulink(r) simulations that demonstrate the effectiveness of the methods detailed. Readers interested in aircraft, vehicle control or various forms of walking robot will be able to learn from "Underactuated Mechanical Systems" how to estimate the degree of complexity required in the control design of several classes of underactuated systems and proceed on to further generate more systematic control laws according to its methods of analysis."
Surge Control of Active-magnetic-bearing-suspended Centrifugal
Compressors sets out the fundamentals of integrating active
magnetic bearing (AMB) rotor suspension technology in compressor
systems, and describes how this relatively new bearing technology
can be employed in active control of compressor surge initiation.
The authors provide a self-contained and comprehensive review of
rotordynamics and the fundamentals of AMB technology. The active
stabilization of compressor surge employing AMBs in a machine is
fully explored, from modeling of instability and controller design,
to the implementation and experimental testing of the control
algorithm in a specially-constructed, industrial-size centrifugal
compression system. The results of these tests demonstrate the
great potential of the new surge control method suggested in this
text.
There is little doubt that robotic and automated systems in space will contribute considerably to the future commercialisation of the space environment. This text provides a systems eye view of robotic spacecraft design with an emphasis on control systems.The first half of the book introduces the techniques of robotics and robotic control, and is the most mathematical part of the book. The second half of the book deals with spacecraft systems themselves, and how a robotic-type payload influences them, including consideration of financial and legal issues which are often left out of technical texts.Running through the book is the implementation of a freeflying robotic spacecraft called ATLAS (Advanced TeLerobotic Actuation System). However, the techniques presented in the book are completely general and the ATLAS spacecraft just serves as an example, albeit a very useful and economically viable space system.
Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. "Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture & Testing "explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, "Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture & Testing" provides the missing link between theory and implementation. Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered in three steps: analysis step under design loads, experimental testing to verify design, and manufacturing. Stress engineers, lecturers, researchers and students will find "Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture & Testing "a key guide on with practical instruction on applying manufacturing simulations to improve their design and reduce project cost, how to prepare static and dynamic test specifications, and how to use finite element method to investigate in more details any component that may fail during testing. "
Composite Materials in Aerospace Design is one of six titles in a coherent and definitive series dedicated to advanced composite materials research, development and usage in the former Soviet Union. Much of the information presented has been classified until recently. Thus each volume provides a unique insight into hitherto unknown research and development data. This volume deals with the design philosophy and methodology used to produce primary and secondary load bearing composite structures with high life expectancies. The underlying theme is of extensive advanced composites research and development programs in aircraft and spacecraft applications, including the space orbital ship BURAN'. The applicability of much of this work to other market sectors, such as automotive, shipbuilding and sporting goods is also examined in some detail. The text starts by describing typical structures for which composites may be used in this area and some of the basic requirements from the materials being used. Design of components with composite materials is then discussed, with specific reference to case studies. This is followed by discussion and results from evaluation of finished structures and components, methods of joining with conventional materials and finally, non-destructive testing methods and forecasting of the performance of the composite materials and the structures which they form. Composite Materials in Aerospace Design will be of interest to anyone researching or developing in composite materials science and technology, as well as design and aerospace engineers, both in industry and universities.
Principles of Nuclear Rocket Propulsion, Second Edition continues to put the technical and theoretical aspects of nuclear rocket propulsion into a clear and unified presentation, providing an understanding of the physical principles underlying the design and operation of nuclear fission-based rocket engines. This new edition expands on existing material and adds new topics, such as antimatter propulsion, a description of a liquid core-based nuclear rocket engine, nuclear rocket startup, new fuel forms, reactor stability, and new advanced reactor concepts. This new edition is for aerospace and nuclear engineers and advanced students interested in nuclear rocket propulsion.
"Proceedings of the First Symposium on Aviation Maintenance and Management "collects selected papers from the conference of ISAMM 2013 in China held in Xi'an on November 25-28, 2013. The book presents state-of-the-art studies on the aviation maintenance, test, fault diagnosis, and prognosis for the aircraft electronic and electrical systems. The selected works can help promote the development of the maintenance and test technology for the aircraft complex systems. Researchers and engineers in the fields of electrical engineering and aerospace engineering can benefit from the book. Jinsong Wang is a professor at School of Mechanical and Electronic Engineering of Northwestern Polytechnical University, China.
The aeronautics industry is presently aiming for faster design cycles and shorter time to market of new aircraft. It is looking at the same time for improved aerodynamic performance, for evident competitive reasons. Advanced, computer based design systems, including fast and reliable numerical flow solvers, have been developed in the last decade including new turbulence models. On the experimental side, measurement techniques in general have also been improved significantly, however the data evaluation process remains still very time consuming, and unsteady effects and turbulence are often not being captured with sufficient accuracy and detail. The development of Particle Image Velocimetry (PIV) has helped to improve the analysis of the flow fields. After investigations in laboratory scale wind tunnels, a joint initiative on PIV research, by the European Aerospace Research Establishments, within GARTEUR have enabled a wide breakthrough of this new technology in Europe. Within the Research Framework Program of the European Union, the joint research project EUROPIV aimed to apply PIV technology to problems of industrial interest.
This book contains chapters written by some eminent scientists and researchers on Computational Methods in Hypersonic Aerodynamics and forms a natural sequel to the earlier publications on Computational Methods in Potential Flow (1986) and Computational Methods in Viscous Aerodynamics (1990). In this book, the earlier attempts at the solution of the highly nonlinear Navier-Stokes equations are extended to the aerothermodynamics of flow in the hypersonic regime, including the effects of viscosity on the physical and chemical processes of high-temperature nonequilibrium flow at very high speeds, such as vibrational excitation, dissociation and recombination, ionization and radiation, as well as real gas effects and the effects of high temperature and low density. The book has been prepared as a valuable contribution to the state-of-the-art on computational methods in hypersonic aerodynamics. All the chapters have been written by eminent scientists and researchers well known for their work in this field.
Boeing's 737 is indisputably the most popular and arguably the safest commercial airliner in the world. But the plane had a lethal flaw, and only after several disastrous crashes and years of painstaking investigation was the mystery of its rudder failure solved. This book tells the story of how engineers and scientists finally uncovered the defect that had been engineered into the plane.
Modern systems and means of aeronautical radio communication are continuously being improved, but without the development of new technical means, the aviation industry suffers. The development of more innovative plans of aviation technology are needed in order to respond to the ever-increasing standard of aviation technology. Recent Advances in Satellite Aeronautical Communications Modeling is devoted to the modeling of satellite communication channels for aircraft and RPAS/UAV using the Matlab Simulink and NetCracker software. Featuring research on topics such as channel coding, microwave emitters, and array modeling, this book is ideally designed for scientists, engineers, air traffic controllers, managers, researchers, and academicians.
This book is devoted to the PSI method. Its appearance was a reaction to the unsatisfactory situation in applications of optimization methods in engineering. After comprehensive testing of the PSI method in various fields of machine engineering it has become obvious that this method substantially surpasses all other available techniques in many respects. It has now become known that the PSI method is successfully used not only in machine design, at which it was initially aimed, but also in polymer chemistry, pharmacy, nuclear energy, biology, geophysics, and many other fields of human activity. To all appearances this method has become so popular for its potential of taking into account the specific features of applied optimization better than other methods, being, at the same time, comparatively simple and friendly, and because, unlike traditional optimization methods which are intended only for searching for optimal solutions, the PSI method is also aimed at correctly formulating engineering optimization problems. One well-known aircraft designer once said, "To solve an optimization problem in engineering means, first of all, to be able to state this problem properly." In this sense the PSI method has no competitors. Although this method has been presented in Russia in numerous papers and books, Western readers have had the opportunity to familiarize themselves with this method only recently (Ozernoy 1988; Lieberman 1991; Stadler and Dauer 1992; Dyer, Fishburn, Steuer, Wallenius, and Zionts 1992; Steuer and Sun 1995, etc. ).
Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments provides an overview of how unmanned aerial systems have revolutionized our capability to monitor river systems, soil characteristics, and related processes at unparalleled spatio-temporal resolutions. This capability has enabled enhancements in our capacity to describe water cycle and hydrological processes. The book includes guidelines, technical advice, and practical experience to support practitioners and scientists in increasing the efficiency of monitoring with the help of UAS. The book contains field survey datasets to use as practical exercises, allowing proposed techniques and methods to be applied to real world case studies.
Design a flexible protective layer for a space suit. Space suits have come a long way. The look and function of space suits has evolved over time, but their purpose has always been the same--to keep astronauts safe. From the first suits worn during the Mercury missions, to the latest suits being tested by NASA, there have been great improvements. Learn all about the science behind space suits and how they have changed over time. Created in collaboration with the Smithsonian Institution, this Spanish Smithsonian Informational Text builds reading skills while engaging students' curiosity about STEAM topics through real-world examples. Packed with factoids and informative sidebars, it features a hands-on STEAM challenge that is perfect for use in a makerspace and teaches students every step of the engineering design process. Make STEAM career connections with career advice from actual Smithsonian employees working in STEAM fields. Discover engineering innovations that solve real-world problems with content that touches on all aspects of STEAM: Science, Technology, Engineering, the Arts, and Math! |
You may like...
The Music Producer's Handbook - Includes…
Bobby Owsinski
Paperback
Topics in Theoretical and Computational…
Jeffrey Michael McMahon
Hardcover
R2,660
Discovery Miles 26 600
|