![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology
Composite structures are most efficient in performance and
production cost when combined with smart materials making them
adaptable to changing operational conditions.
Discusses the concepts of mechanical, thermal, and thermodynamic equilibrium and their applications. Covers the molecular basis for internal energy, entropy, thermodynamic equilibrium, and reversibility. Enables the reader to model irreversibility and determine the net loss in performance of a thermal system compared to an idealized system and approach an ideal one. Demonstrates entropy as a path independent property by use of reversible heat engines and reversible heat pumps interacting with a process between two states, the environment and the reservoir. Covers the role of reversibility from a thermodynamics standpoint and relates it to other areas, such as gas dynamics, combustion, propulsion, power plant engineering, and engines.
This book presents the first-ever comprehensive analysis of ASEAN space development programs. Written by prominent actors in the region, it goes beyond a mere expose of the history, current status and future plans of ASEAN space technology development and utilization programs, by analyzing the conditions in which a space program can be initiated in the region. It does so in two ways: on the one hand, it questions the relevance of and motivations behind the inception of space development programs in developing countries, and on the other hand, it focuses on the very specific context of ASEAN (a highly disaster-prone area shaped by unique political alliances with a distinctive geopolitical ecosystem and enormous economic potential, etc.). Last but not least, after having analyzed established and emerging space programs in the region, it provides concrete recommendations for any regional or extra-regional developing nation eager to gain a foothold in space. As such, this book offers a valuable resource for researchers and engineers in the field of space technology, as well as for space agencies and government policymakers.
Electric Aircraft Dynamics: A Systems Engineering Approach surveys engineering sciences that underpin the dynamics, control, monitoring, and design of electric propulsion systems for aircraft. It is structured to appeal to readers with a science and engineering background and is modular in format. The closely linked chapters present descriptive material and relevant mathematical modeling techniques. Taken as a whole, this ground-breaking text equips professional and student readers with a solid foundation for advanced work in this emerging field. Key Features: Provides the first systems-based overview of this emerging aerospace technology Surveys low-weight battery technologies and their use in electric aircraft propulsion Explores the design and use of plasma actuation for boundary layer and flow control Considers the integrated design of electric motor-driven propellers Includes PowerPoint slides for instructors using the text for classes Dr. Ranjan Vepa earned his PhD in applied mechanics from Stanford University, California. He currently serves as a lecturer in the School of Engineering and Material Science, Queen Mary University of London, where he has also been the programme director of the Avionics Programme since 2001. Dr. Vepa is a member of the Royal Aeronautical Society, London; the Institution of Electrical and Electronic Engineers (IEEE), New York; a Fellow of the Higher Education Academy; a member of the Royal Institute of Navigation, London; and a chartered engineer.
The 3rd edition of this practical, hands-on book discusses the range of launch vehicles in use today throughout the world, and includes the very latest details of some of the advanced propulsion systems currently being developed. The author covers the fundamentals of the subject, from the basic principles of rocket propulsion and vehicle dynamics through the theory and practice of liquid and solid propellant motors, to new and future developments. The didactic value of the early chapters on the basics of rocket propulsion, by re-working the derivations and updating the examples will be enhanced. The 3rd edition will stick to the same principle of providing a serious exposition of the principles and practice of rocket propulsion, but from the point of view of the user and enquirer who is not an engineering specialist. Most chapters will remain substantially the same as the second edition; they will be updated where necessary and errata corrected. In particular the new chapters added for the second edition, on Electric and Nuclear propulsion will remain substantially the same. In addition to general revision, updating and the correction of errata on all chapters, this updated edition will detail a number of new developments in the field Chapter 3 on Liquid propellant rocket engines will have new sections on air breathing engines and on new engines and propellants for the human exploration program. Chapter 8 will now de-emphasize the SSTO concepts, not longer seen as promising, and include new sections on variable thrust engines, again for human exploration. Other new developments following the announcement and subsequent development of NASA s new man-rated launcher, the ARES, and its Constellation vehicle set. Also covered will be sub-orbital space tourist vehicles and the new rocket engines, which have been developed for them. A new chapter on man-rated launchers and their important characteristics will detail this. New interest in Lunar exploration and the need to supply Lunar bases exposes the requirement for high efficiency engines for Lunar transportation and storage of high energy propellants like liquid oxygen and liquid hydrogen. New engines designed for in-space transportation and Lunar landing and departure will be added to the relevant chapters."
This book explores the design of optimal trajectories for space maneuver vehicles (SMVs) using optimal control-based techniques. It begins with a comprehensive introduction to and overview of three main approaches to trajectory optimization, and subsequently focuses on the design of a novel hybrid optimization strategy that combines an initial guess generator with an improved gradient-based inner optimizer. Further, it highlights the development of multi-objective spacecraft trajectory optimization problems, with a particular focus on multi-objective transcription methods and multi-objective evolutionary algorithms. In its final sections, the book studies spacecraft flight scenarios with noise-perturbed dynamics and probabilistic constraints, and designs and validates new chance-constrained optimal control frameworks. The comprehensive and systematic treatment of practical issues in spacecraft trajectory optimization is one of the book's major features, making it particularly suited for readers who are seeking practical solutions in spacecraft trajectory optimization. It offers a valuable asset for researchers, engineers, and graduate students in GNC systems, engineering optimization, applied optimal control theory, etc.
Have you ever wondered how NASA designs, builds, and tests spacecrafts and hardware for space? How is it that wildly successful programs such as the Mars Exploration Rovers could produce a rover that lasted over ten times the expected prime mission duration? Or build a spacecraft designed to visit two orbiting destinations and last over 10 years when the fuel ran out? This book was written by NASA/JPL engineers with experience across multiple projects, including the Mars rovers, Mars helicopter, and Dawn ion propulsion spacecraft in addition to many more missions and technology demonstration programs. It provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars. This is done without losing sight of the fundamental and classical theories of thermodynamics and structural mechanics that paved the way to more pragmatic and applied methods such finite element analysis and Monte Carlo ray tracing, for example. Features: Includes case studies from NASA's Jet Propulsion Laboratory, which prides itself in robotic exploration of the solar system, as well as flyting the first cubeSAT to Mars. Enables spacecraft designer engineers to create a design that is structurally and thermally sound, and reliable, in the quickest time afforded. Examines innovative low-cost thermal and power systems. Explains how to design to survive rocket launch, the surfaces of Mars and Venus. Suitable for practicing professionals as well as upper-level students in the areas of aerospace, mechanical, thermal, electrical, and systems engineering, Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments provides cutting-edge information on how to design, and analyze, and test in the fast-paced and low-cost small satellite environment and learn techniques to reduce the design and test cycles without compromising reliability. It serves both as a reference and a training manual for designing satellites to withstand the structural and thermal challenges of extreme environments in outer space.
The book reports on the latest theoretical and experimental findings in the field of active flow and combustion control, in the context of energy conversion for power and propulsion systems. It covers new developments in actuator technology and sensing, robust and optimal open- and closed-loop control, model reduction for control purposes, and unsteady turbine cooling and performance, among other relevant topics. Gathering contributions to the Active Flow and Combustion Control (AFCC 2021), held virtually on September 28-29, 2021, from the Technische Universitat Berlin, Germany, this book describes research that has been carried out within, and supported by, the collaborative research center SFB 1029 on "Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics", and funded by the German Research Foundation (DFG). It highlights theoretical and practical aspects, and corresponding solutions, that are important for the development of future energy conversion systems, thus offering a timely guide for researchers and practitioners in the field of aeronautics, turbomachinery, control and combustion.
This book is about aerospace sensors, their principles of operation, and their typical advantages, shortcomings, and vulnerabilities. They are described in the framework of the subsystems where they function and in accordance with the flight mission they are designed to serve. The book is intended for students at the advanced undergraduate or graduate level and for research engineers who need to acquire this kind of knowledge. An effort has been made to explain, within a uniform framework of mathematical modeling, the physics upon which a certain sensor concept is based, its construction, its dynamics, and its error sources and their corresponding mathematical models. Equipped with such knowledge and understanding, the student or research engineer should be able to get involved in research and development activities of guidance, control, and navigation systems and to contribute to the initiation of novel ideas in the aerospace sensor field. As a designer and systems engineer, he should be able to correctly interpret the various items in a technical data list and thus to interact intelligently with manufacturers' representatives and other members of an R&D team. Much of the text has evolved from undergraduate and graduate courses given by the author during the past seventeen years at the Department of Aerospace Engineering at the Technion- Israel Institute of Technology and from his earlier research and development experience in flight control, guidance, navigation, and avionics at the Ministry of Defense Central Research Institute.
This book presents a collection of chapters, which address various contexts and challenges of the idea of human enhancement for the purposes of human space missions. The authors discuss pros and cons of mostly biological enhancement of human astronauts operating in hostile space environments, but also ethical and theological aspects are addressed. In contrast to the idea and program of human enhancement on Earth, human enhancement in space is considered a serious and necessary option. This book aims at scholars in the following fields: ethics and philosophy, space policy, public policy, as well as biologists and psychologists.
Aviation safety and astronautics safety are taught as technical subjects informed, for the most part, by quantitative methods. Here, as in other fields, safety is often framed as an engineering problem requiring mathematics-informed solutions. This book argues that the socio-technical approach, encompassing theories grounded in sociology and psychology - such as active learning, high-reliability organising, mindfulness, leadership, followership and empowerment - has much to contribute to the safety performance of these vital industries. It sets out to inspire professionals to embed the whole-system approach into design and operation regimen and describes the reputational and financial benefits to manufacturers and operators that accrue from adopting a whole-system approach to design and operation. The book defines the socio-technical approach to risk assessment and management in aviation and astronautics (astronautics is taken to mean "the design and operation of vehicles for use beyond the earth's atmosphere"), then demonstrates the strengths and weaknesses of this approach through case studies of, for example, the Boeing 737MAX-8 accidents and the loss of the SpaceShipTwo orbiter. Grounding the discourse in familiar case studies engages busy aviation and astronautics professionals. The book's arguments are explained in such a way that they are readily comprehensible to non-experts. Key concepts are defined within a glossary. Photographs, charts and diagrams illustrate key points. Written for a practitioner audience, specifically aviation and astronautics professionals, this book provides a valuable and accessible social sciences perspective on safety that will be directly relevant to their roles.
Aviation safety and astronautics safety are taught as technical subjects informed, for the most part, by quantitative methods. Here, as in other fields, safety is often framed as an engineering problem requiring mathematics-informed solutions. This book argues that the socio-technical approach, encompassing theories grounded in sociology and psychology - such as active learning, high-reliability organising, mindfulness, leadership, followership and empowerment - has much to contribute to the safety performance of these vital industries. It sets out to inspire professionals to embed the whole-system approach into design and operation regimen and describes the reputational and financial benefits to manufacturers and operators that accrue from adopting a whole-system approach to design and operation. The book defines the socio-technical approach to risk assessment and management in aviation and astronautics (astronautics is taken to mean "the design and operation of vehicles for use beyond the earth's atmosphere"), then demonstrates the strengths and weaknesses of this approach through case studies of, for example, the Boeing 737MAX-8 accidents and the loss of the SpaceShipTwo orbiter. Grounding the discourse in familiar case studies engages busy aviation and astronautics professionals. The book's arguments are explained in such a way that they are readily comprehensible to non-experts. Key concepts are defined within a glossary. Photographs, charts and diagrams illustrate key points. Written for a practitioner audience, specifically aviation and astronautics professionals, this book provides a valuable and accessible social sciences perspective on safety that will be directly relevant to their roles.
This volume contains the proceedings of the Workshop on Com bustion, sponsored by the Institute for Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center (LaRC). It was held on October 12-14, 1992, and was the sec ond workshop in the series on the subject. The first was held in 1989, and its proceedings were published by Springer-Verlag under the title "Major Research Topics in Combustion," edited by M. Y. Hussaini, A. Kumar, and R. G. Voigt. The focus of the second workshop was directed towards the development, analysis, and application of basic models in high speed propulsion of particular interest to NASA. The exploration of a dual approach combining asymptotic and numerical methods for the analysis of the models was particularly encouraged. The objectives of this workshop were i) the genesis of models that would capture or reflect the basic pllysical phenomena in SCRAMJETs and/or oblique detonation-wave engines (ODWE), and ii) the stimulation of a greater interaction between NASA exper imental research community and the academic community. The lead paper by D. Bushnell on the status and issues of high speed propulsion relevant to both the SCRAMJET and the ODWE parallels his keynote address which set the stage of the workshop. Following the lead paper were five technical sessions with titles and chairs: Experiments (C. Rogers), Reacting Free Shear Layers (C. E. Grosch), Detonations (A. K. Kapila), Ignition and Struc ture (J. Buckmaster), and Unsteady Behaviour ('1'. L. Jackson)."
Composites Innovation: Perspectives on Advancing the Industry provides a panoramic view of innovations in the composites industry, including discussions from business leaders and the university research community on advanced applications in North America, advances in recycling of composites, the use of artificial intelligence, nanocomposites, and emerging smart composites technology. The book is arranged in five key segments including: how composites fit into our world; the basics of the technology; customer insights; pushing the boundaries with concepts from outside the world of composites and emerging composites technologies; and paths forward to find competitive and effective solutions in a timely manner. Key Features Considers sustainability and innovation as driving forces for the growth of composites Explores materials and process development, including chopped and continuous fiber systems Provides a landscape of the status of intellectual property and patents Discusses use of artificial intelligence to improve business systems with case studies and a new disciplined approach to ideation and innovation Features chapters by an accomplished group of global business and technology leaders With contributing authors spanning 15 time zones to pioneer new solutions with composite materials, this book provides an excellent resource for composites business leaders, researchers and educators, and industry professionals, as well as new entrants to this vibrant community.
This book presents methods and algorithms to improve noise immunity of the navigation systems of civil aviation aircraft, operating on the basis of satellite radio navigation systems, as well as improving the quality of the transmission of navigation information by selecting a rational communication resource. The book provides for its productive perception both by specialists involved in the development and operation of radio electronic equipment, responsible for navigation and communication support of civil aviation aircraft, as well as by graduate students or senior students, since this book examines in detail the promising fields of development of these tools taking into account the need to comply with all requirements for noise immunity.
This book brings together in-depth information on a wide array of bio-engineering topics and their application to enhance human health, performance, comfort, and survival in extreme environments. Contributions from biomedical engineering, information systems, medicine and physiology, and medical engineering are presented in relation to a broad range of harsh and extreme environmental scenarios, including underwater, terrestrial (both natural and man-made), and space travel. Physicians, engineers, and scientists, as well as researchers and graduate students, will find the book to be an invaluable resource. Details effects of extreme environments on human physiology; Presents human-environment interaction in different scenarios; Overview of engineering challenges and problems in extreme environments.
There are few industries in today's world as dynamic and dramatically changing as the space sector, with new ventures and initiatives being announced on a daily basis. As well as emerging countries improving their launching and manufacturing capabilities, private actors are beginning to join public bodies in the space race, and participating in what is frequently being referred to as the new space era. With fantastic opportunities arising for business and economics, this book provides a comprehensive overview of the space sector, exploring recent initiatives, and the most important areas of investment in the industry, including emerging fields of activities such as asteroid mining and space tourism. It also addresses traditional and non-traditional security issues in the sector, together with discussing their legal implications. This interdisciplinary book provides insights for practitioners and researchers alike, particularly those involved in technology and innovation management, emerging markets, international relations, and security studies.
"Commercial Airplane Design Principles" is a succinct, focused text covering all the information required at the preliminary stage of aircraft design: initial sizing and weight estimation, fuselage design, engine selection, aerodynamic analysis, stability and control, drag estimation, performance analysis, and economic analysis. The text places emphasis on making informed choices from an
array of competing options, and developing the confidence to do
so.
This book gathers selected papers from the Chinese Materials Conference 2018 (CMC2018) held in Xiamen City, Fujian, China, on July 12-16, 2018. The Chinese Materials Conference (CMC) is the Chinese Materials Research Society's most important conference series and has been held annually since the early 1990s. The 2018 edition consisted of 32 domestic symposia, 2 international symposia and 1 international materials forum. This proceedings book covers the fields of powder metallurgy, advanced aluminum alloys, advanced magnesium alloys, superalloys, metal matrix composites, space materials science and technology, as well as nanoporous metal materials, and presents recent original research findings from more than 300 research groups at various universities and research institutes.
The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers that form the chapters of this book were reviewed and revised from the perspective of advanced relevant technologies in the field. The aim of this book is to stimulate interactions among researchers active in the areas pertinent to intelligent unmanned systems.
This book introduces unmanned aircraft systems traffic management (UTM) and how this new paradigm in traffic management integrates unmanned aircraft operations into national airspace systems. Exploring how UTM is expected to operate, including possible architectures for UTM implementations, and UTM services, including flight planning, strategic coordination, and conformance monitoring, Unmanned Aircraft Systems Traffic Management: UTM considers the boundaries of UTM and how it is expected to interlace with tactical coordination systems to maintain airspace safety. The book also presents the work of the global ecosystem of players advancing UTM, including relevant standards development organizations (SDOs), and considers UTM governance paradigms and challenges. FEATURES Describes UTM concept of operations (ConOps) and global variations in architectures Explores envisioned UTM services, including flight planning, strategic coordination, conformance monitoring, contingency management, constraints and geo-awareness, and remote identification Highlights cybersecurity standards development and awareness Covers approaches to the approval, management, and oversight of UTM components and ecosystem Considers the future of UTM and potential barriers to its success, international coordination, and regulatory reform This book is an essential, in-depth, annotated resource for developers, unmanned aircraft system operators, pilots, policy makers, researchers, and academics engaged in unmanned systems, transportation management, and the future of aviation.
This book presents an isospectral approach for several important mechanical vibrating systems. Discrete and continuous isospectral systems are discussed using a simple multi-degree of freedom spring-mass system followed by illustration of isospectral beams and their solution through evolutionary computing. Next, it addresses axially loaded Euler-Bernoulli beams and aims to find isospectral counterparts of these systems. The practical application of these isospectral systems for vibration testing and for finding new closed form solutions is discussed. A considerable part of the book is devoted to isospectral rotating beams and their non-rotating analogs including Rayleigh beams. Aimed at researchers and graduate students in mechanical; aerospace; civil; automotive; ocean engineering especially mechanical vibrations, this monograph: Discusses isospectral vibrating systems to aid vibration testing and computational analysis Explores isospectral analogs between rotating and non-rotating structures Provides simpler isospectral beams for vibration testing and for 3D printing Uses firefly optimization method and electromagnetism inspired optimization method to find isospectral systems Shows the use of isospectral systems to find new closed form solutions using an indirect approach
|
![]() ![]() You may like...
Barbie - My Busy Books - Storybook + 10…
Phidal Publishing
Mixed media product
The Rebel Witch - The Crimson Moth: Book…
Kristen Ciccarelli
Paperback
|