![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > DNA
Understanding mechanisms of gene regulation that are independent of the DNA sequence itself - epigenetics - has the potential to overthrow long-held views on central topics in biology, such as the biology of disease or the evolution of species. High throughput technologies reveal epigenetic mechanisms at a genome-wide level, giving rise to epigenomics as a new discipline with a distinct set of research questions and methods. Leading experts from academia, the biotechnology and pharmaceutical industries explain the role of epigenomics in a wide range of contexts, covering basic chromatin biology, imprinting at a genome-wide level, and epigenomics in disease biology and epidemiology. Details on assays and sequencing technology serve as an up-to-date overview of the available technological tool kit. A reliable guide for newcomers to the field as well as experienced scientists, this is a unique resource for anyone interested in applying the power of twenty-first-century genomics to epigenetic studies.
DNA can be extracted and sequenced from a diverse range of biological samples, providing a vast amount of information about evolution and ecology. The analysis of DNA sequences contributes to evolutionary biology at all levels, from dating the origin of the biological kingdoms to untangling family relationships. An Introduction to Molecular Evolution and Phylogenetics presents the fundamental concepts and intellectual tools you need to understand how the genome records information about evolutionary past and processes, how that information can be "read", and what kinds of questions we can use that information to answer. Starting with evolutionary principles, and illustrated throughout with biological examples, it is the perfect starting point on the journey to an understanding of the way molecular data is used in modern biology. Online Resource Centre The Online Resource Centre features: For registered adopters of the book: - Class plans for one-hour hands-on sessions associated with each chapter - Figures from the textbook to view and download
This book provides a broad introduction to all major aspects of quantum dot properties including fluorescence, electrochemical, photochemical and electroluminescence. Such properties have been produced for applications in biosensing, cell tracking, in vivo animal imaging and so on. It focuses on their special applications in DNA biosensing and provides readers with detailed information on the preparation and functionalization of quantum dots and the fabrication of DNA biosensors, using examples to show how these properties can be used in DNA biosensor design and the advantages of quantum dots in DNA biosensing. Further new emerging quantum dots such as metal nanoclusters and graphene dots and their applications in DNA biosensing have also been included.
Using genome sequencing, one can predict possible interactions among proteins. There are very few titles that focus on protein-protein interaction predictions in bacteria. The authors will describe these methods and further highlight its use to predict various biological pathways and complexity of the cellular response to various environmental conditions. Topics include analysis of complex genome-scale protein-protein interaction networks, effects of reference genome selection on prediction accuracy, and genome sequence templates to predict protein function.
Understanding mechanisms of gene regulation that are independent of the DNA sequence itself - epigenetics - has the potential to overthrow long-held views on central topics in biology, such as the biology of disease or the evolution of species. High throughput technologies reveal epigenetic mechanisms at a genome-wide level, giving rise to epigenomics as a new discipline with a distinct set of research questions and methods. Leading experts from academia, the biotechnology and pharmaceutical industries explain the role of epigenomics in a wide range of contexts, covering basic chromatin biology, imprinting at a genome-wide level, and epigenomics in disease biology and epidemiology. Details on assays and sequencing technology serve as an up-to-date overview of the available technological tool kit. A reliable guide for newcomers to the field as well as experienced scientists, this is a unique resource for anyone interested in applying the power of twenty-first-century genomics to epigenetic studies.
"Genome Transcriptome and Proteome Analysis" is a concise introduction to the subject, successfully bringing together these three key areas of research. Starting with a revision of molecular genetics the book offers clear explanations of the tools and techniques widely used in genome, transcriptome and proteome analysis. Subsequent chapters offer a broad overview of linkage maps, physical maps and genome sequencing, with a final discussion on the identification of genes responsible for disease. An invaluable introduction to the basic concepts of the subject, this text offers the student an excellent overview of current research methods and applications and is a good starting point for those new to the area. It gives a clear, concise introduction to the subject of modern genomic analysis. It provides a technology-oriented approach including the latest developments in the field. It is invaluable to those students taking courses in Bioinformatics, Human Genetics, Biochemistry and Molecular Biology.
Sequencing is often associated with the Human Genome Project and celebrated achievements concerning the DNA molecule. However, the history of this practice comprises not only academic biology, but also the world of computer-assisted information management. The book uncovers this history, qualifying the hype and expectations around genomics.
With the arrival of genomics and genome sequencing projects, biology has been transformed into an incredibly data-rich science. The vast amount of information generated has made computational analysis critical and has increased demand for skilled bioinformaticians. Designed for biologists without previous programming experience, this textbook provides a hands-on introduction to Unix, Perl and other tools used in sequence bioinformatics. Relevant biological topics are used throughout the book and are combined with practical bioinformatics examples, leading students through the process from biological problem to computational solution. All of the Perl scripts, sequence and database files used in the book are available for download at the accompanying website, allowing the reader to easily follow each example using their own computer. Programming examples are kept at an introductory level, avoiding complex mathematics that students often find daunting. The book demonstrates that even simple programs can provide powerful solutions to many complex bioinformatics problems.
Quantitative trait locus (QTL) mapping is used to discover the genetic and molecular architecture underlying complex quantitative traits. It has important applications in agricultural, evolutionary, and biomedical research. R/qtl is an extensible, interactive environment for QTL mapping in experimental crosses. It is implemented as a package for the widely used open source statistical software R and contains a diverse array of QTL mapping methods, diagnostic tools for ensuring high-quality data, and facilities for the fit and exploration of multiple-QTL models, including QTL x QTL and QTL x environment interactions. This book is a comprehensive guide to the practice of QTL mapping and the use of R/qtl, including study design, data import and simulation, data diagnostics, interval mapping and generalizations, two-dimensional genome scans, and the consideration of complex multiple-QTL models. Two moderately challenging case studies illustrate QTL analysis in its entirety. The book alternates between QTL mapping theory and examples illustrating the use of R/qtl. Novice readers will find detailed explanations of the important statistical concepts and, through the extensive software illustrations, will be able to apply these concepts in their own research. Experienced readers will find details on the underlying algorithms and the implementation of extensions to R/qtl. There are 150 figures, including 90 in full color.
Massive data acquisition technologies, such as genome sequencing, high-throughput drug screening, and DNA arrays are in the process of revolutionizing biology and medicine. Using the mRNA of a given cell, at a given time, under a given set of conditions, DNA microarrays can provide a snapshot of the level of expression of all the genes in the cell. Such snapshots can be used to study fundamental biological phenomena such as development or evolution, to determine the function of new genes, to infer the role individual genes or groups of genes may play in diseases, and to monitor the effect of drugs and other compounds on gene expression. Originally published in 2002, this inter-disciplinary introduction to DNA arrays will be of value to anyone with an a interest in this powerful technology.
This concise, self-contained, and cohesive book focuses on commonly used and recently developed methods for designing and analyzing high-throughput screening (HTS) experiments from a statistically sound basis. Combining ideas from biology, computing, and statistics, the author explains experimental designs and analytic methods that are amenable to rigorous analysis and interpretation of RNAi HTS experiments. The opening chapters are carefully presented to be accessible both to biologists with training only in basic statistics and to computational scientists and statisticians with basic biological knowledge. Biologists will see how new experiment designs and rudimentary data-handling strategies for RNAi HTS experiments can improve their results, whereas analysts will learn how to apply recently developed statistical methods to interpret HTS experiments.
Covering newsworthy aspects of contemporary biology -- gene therapy, the Human Genome Project, DNA testing, and genetic engineering -- as well as fundamental concepts, this book, written specifically for nonbiologists, discusses classical and molecular genetics, quantitative and population genetics -- including cloning and genetic diseases -- and the many applications of genetics to the world around us, from genetically modified foods to genetic testing. With minimal technical terminology and jargon, "Genes and DNA" facilitates conceptual understanding. Eschewing the organization of traditional genetics texts, the authors have provided an organic progression of information: topics are introduced as needed, within a broader framework that makes them meaningful for nonbiologists. The book encourages the reader to think independently, always stressing scientific background and current facts.
The sequencing of the human genome and subsequent elucidation of the molecular pathways that are important in the pathology of disease have provided unprecedented opportunities for the development of new therapeutics. Nucleic acid-based drugs have emerged in recent years to yield extremely promising candidates for drug therapy to a wide range of diseases. Advances in Nucleic Acid Therapeutics is a comprehensive review of the latest advances in the field, covering the background of the development of nucleic acids for therapeutic purposes to the array of drug development approaches currently being pursued using antisense, RNAi, aptamer, immune modulatory and other synthetic oligonucleotides. Nucleic acid therapeutics is a field that has been continually innovating to meet the challenges of drug discovery and development; bringing contributions together from leaders at the forefront of progress, this book depicts the many approaches currently being pursued in both academia and industry. A go-to volume for medicinal chemists, Advances in Nucleic Acid Therapeutics provides a broad overview of techniques of contemporary interest in drug discovery.
The DNA of all organisms is constantly being damaged by endogenous and exogenous sources. Oxygen metabolism generates reactive species that can damage DNA, proteins and other organic compounds in living cells. Exogenous sources include ionizing and ultraviolet radiations, carcinogenic compounds and environmental toxins among others. The discovery of multiple DNA lesions and DNA repair mechanisms showed the involvement of DNA damage and DNA repair in the pathogenesis of many human diseases, most notably cancer. These books provide a comprehensive overview of the interdisciplinary area of DNA damage and DNA repair, and their relevance to disease pathology. Edited by recognised leaders in the field, this two-volume set is an appealing resource to a variety of readers including chemists, chemical biologists, geneticists, cancer researchers and drug discovery scientists.
Aging has long since been ascribed to the gradual accumulation of DNA mutations in the genome of somatic cells. However, it is only recently that the necessary sophisticated technology has been developed to begin testing this theory and its consequences. Vijg critically reviews the concept of genomic instability as a possible universal cause of aging in the context of a new, holistic understanding of genome functioning in complex organisms resulting from recent advances in functional genomics and systems biology. It provides an up-to-date synthesis of current research, as well as a look ahead to the design of strategies to retard or reverse the deleterious effects of aging. This is particularly important in a time when we are urgently trying to unravel the genetic component of aging-related diseases. Moreover, there is a growing public recognition of the imperative of understanding more about the underlying biology of aging, driven by continuing demographic change.
This book is the first of its kind to provide a large collection of bioinformatics problems with accompanying solutions. Notably, the problem set includes all of the problems offered in Biological Sequence Analysis, by Durbin et al. (Cambridge, 1998), widely adopted as a required text for bioinformatics courses at leading universities worldwide. Although many of the problems included in Biological Sequence Analysis as exercises for its readers have been repeatedly used for homework and tests, no detailed solutions for the problems were available. Bioinformatics instructors had therefore frequently expressed a need for fully worked solutions and a larger set of problems for use on courses. This book provides just that: following the same structure as Biological Sequence Analysis and significantly extending the set of workable problems, it will facilitate a better understanding of the contents of the chapters in BSA and will help its readers develop problem-solving skills that are vitally important for conducting successful research in the growing field of bioinformatics. All of the material has been class-tested by the authors at Georgia Tech, where the first ever MSc degree program in Bioinformatics was held.
This is the story of how three men won the Nobel Prize for their research on the humble nematode worm "C. elegans"; how their extraordinary discovery led to the sequencing of the human genome; how a global multibillion-dollar industry was born; and how the mysteries of life were revealed in a tiny, brainless worm. In 1998 the nematode worm -- perhaps the most intensively studied animal on earth -- was the first multicellular organism ever to have its genome sequenced and its DNA mapped and read. "When we understand the worm, we will understand life," predicted John Sulston, one of the three Nobel laureates, and his prediction proved astonishingly accurate. Four years later, the research that led to this extraordinary event garnered three scientists a Nobel Prize. Along with Robert Horvitz and Sydney Brenner, Sulston discovered the phenomenon of programmed cell death in the worm, an essential concept that explains how biological development occurs in animal life and, as Horvitz later showed, how it occurs in human life. "C. elegans" is about as simple as an animal can be, but understanding its genetic organization is helping to reveal the mechanisms of life and, by extension, the mechanisms of our own lives. "In the Beginning Was the Worm" shows that in order to unlock the secrets of the human genome we must first understand the worm. But this story is about more than just the worm. It is about how an eccentric group of impassioned scientists toiled in near anonymity for years, driven only by a deep passion for knowledge and scientific discovery. It is the story of countless hours of research, immense ambition, and one of the greatest discoveries in human history.
With over two hundred types of cancer diagnosed to date, researchers the world over have been forced to rapidly update their understanding of the biology of cancer. In fact, only the study of the basic cellular processes, and how these are altered in cancer cells, can ultimately provide a background for rational therapies. Bringing together the state-of-the-art contributions of international experts, Systems Biology of Cancer proposes an ultimate research goal for the whole scientific community: exploiting systems biology to generate in-depth knowledge based on blueprints that are unique to each type of cancer. Readers are provided with a realistic view of what is known and what is yet to be uncovered on the aberrations in the fundamental biological processes, deregulation of major signaling networks, alterations in major cancers and the strategies for using the scientific knowledge for effective diagnosis, prognosis and drug discovery to improve public health.
This is the story of how three men won the Nobel Prize for their research on the humble nematode worm "C. elegans"; how their extraordinary discovery led to the sequencing of the human genome; how a global multibillion-dollar industry was born; and how the mysteries of life were revealed in a tiny, brainless worm. In 1998 the nematode worm -- perhaps the most intensively studied animal on earth -- was the first multicellular organism ever to have its genome sequenced and its DNA mapped and read. "When we understand the worm, we will understand life," predicted John Sulston, one of the three Nobel laureates, and his prediction proved astonishingly accurate. Four years later, the research that led to this extraordinary event garnered three scientists a Nobel Prize. Along with Robert Horvitz and Sydney Brenner, Sulston discovered the phenomenon of programmed cell death in the worm, an essential concept that explains how biological development occurs in animal life and, as Horvitz later showed, how it occurs in human life. "C. elegans" is about as simple as an animal can be, but understanding its genetic organization is helping to reveal the mechanisms of life and, by extension, the mechanisms of our own lives. "In the Beginning Was the Worm" shows that in order to unlock the secrets of the human genome we must first understand the worm. But this story is about more than just the worm. It is about how an eccentric group of impassioned scientists toiled in near anonymity for years, driven only by a deep passion for knowledge and scientific discovery. It is the story of countless hours of research, immense ambition, and one of the greatest discoveries in human history.
Fully integrated and comprehensive in its coverage, "Root Genomics and Soil Interactions" examines the use of genome-based technologies to understand root development and adaptability to biotic and abiotic stresses and changes in the soil environment. Written by an international team of experts in the field, this timely review highlights both model organisms and important agronomic crops. Coverage includes: novel areas unveiled by genomics research basic root biology and genomic approaches applied to analysis of root responses to the soil environment. Each chapter provides a succinct yet thorough review of research.
Anatomy of Gene Regulation is the first book to present the parts and processes of gene regulation at the three-dimensional level. Vivid structures of nucleic acids and their companion proteins are revealed in full-color, three dimensional form. Beginning with a general introduction to three-dimensional structures, the book looks at the organization of the genome, the structure of DNA, DNA replication and transcription, splicing, protein synthesis, and ultimate protein death. This concise and unique synthesis and its accompanying web site offer insight into gene regulation, and into the development of methods to interfere with regulation at diseased states.
This adventure in science and imagination, which the Medical Tribune said might herald "a Copernican revolution for the life sciences," leads the reader through unexplored jungles and uncharted aspects of mind to the heart of knowledge. In a first-person narrative of scientific discovery that opens new perspectives on biology, anthropology, and the limits of rationalism, The Cosmic Serpent reveals how startlingly different the world around us appears when we open our minds to it.
The massive research effort known as the Human Genome Project is an attempt to record the sequence of the three trillion nucleotides that make up the human genome and to identify individual genes within this sequence. The description and classification of sequences is heavily dependent on mathematical and statistical models. This short textbook presents a brief description of several ways in which mathematics and statistics are being used in genome analysis and sequencing.
Chromatin is DNA plus the proteins (and RNA) that package DNA within the cell nucleus. The primary functions of chromatin are: to package DNA into a smaller volume to fit in the cell, to strengthen the DNA to allow mitosis and meiosis and prevent DNA damage, and to control gene expression and DNA replication. In this book, the authors present topical research in the study of chromatin including the varied functions of aurora kinases A and B in mitosis and carcinogenesis; the chromatin state of pluripotent stem cells; MITF meets chromatin in melanoma; the state of chromatin as an integrative indicator of cell stress; analysing DNA damage and its repair throughout entire genomes; the cloning process, structural characterisation of Revolver transposon and its patented application for chromosome tags; DNA damage and Rad16; and glucocorticoid-induced chromatin remodelling.
A plasmid is a DNA molecule that is separate from, and can replicate independently of, the chromosomal DNA. They are double-stranded and circular in form. Plasmids usually occur naturally in bacteria, but are sometimes found in eukaryotic organisms. In this book, the authors present current research in the genetics, applications and health issues relating to plasmids. Topics include the development of multifunctional plasmids for diverse biotechnological applications; plasmids as indispensable components of multipartite azospirillum genomes; structural and segregational instability in plasmid biology; and conjugal plasmid transfer and phage inhibition kinetics. |
You may like...
The English Handbook and Study Guide - A…
Beryl Lutrin
Paperback
(1)
Outcomes Intermediate: Combo Split B…
Hugh Dellar, Andrew Walkley
Paperback
R772
Discovery Miles 7 720
Introduction To Stochastic Processes And…
Horacio Sergio Wio
Hardcover
R2,313
Discovery Miles 23 130
Thermal Insulation and Radiation Control…
Jan Kosny, David W. Yarbrough
Hardcover
R2,565
Discovery Miles 25 650
Seminar on Stochastic Analysis, Random…
Robert Dalang, Marco Dozzi, …
Hardcover
R2,819
Discovery Miles 28 190
Design for Vulnerable Communities
Emanuele Giorgi, Tiziano Cattaneo, …
Hardcover
R4,320
Discovery Miles 43 200
Biomimetic Lipid Membranes…
Fatma N. Koek, Ahu Arslan Yildiz, …
Hardcover
R2,692
Discovery Miles 26 920
Power Maths 2nd Edition Practice Book 1A
Tony Staneff, Josh Lury
Paperback
R137
Discovery Miles 1 370
MEMS: Field Models and Optimal Design
Paolo Di Barba, Slawomir Wiak
Hardcover
R3,335
Discovery Miles 33 350
|