![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > DNA
Mapping the genomic landscapes is one of the most exciting frontiers of science. We have the opportunity to reverse engineer the blueprints and the control systems of living organisms. Computational tools are key enablers in the deciphering process. This book provides an in-depth presentation of some of the important computational biology approaches to genomic sequence analysis. The first section of the book discusses methods for discovering patterns in DNA and RNA. This is followed by the second section that reflects on methods in various ways, including performance, usage and paradigms.
Bioinformatics of Genome Regulation and Structure covers: -regulatory genomic sequences: databases, knowledge bases,
computer analysis, modeling, and recognition;
The Genome Incorporated examines the proliferation of human genomics across contemporary media cultures. It explores questions about what it means for a technoscience to thoroughly saturate everyday life, and places the interrogation of the science/media relationship at the heart of this enquiry. The book develops a number of case studies in the mediation and consumption of genomics, including: the emergence of new direct-to-the-consumer bioinformatics companies; the mundane propagation of testing and genetic information through lifestyle television programming; and public and private engagements with art and science institutions and events. Through these novel sites, this book examines the proliferating circuits of production and consumption of genetic information and theorizes this as a process of incorporation. Its wide-ranging case studies ensure its appeal to readers across the social sciences.
This unique introduction to the growing field of microfluidics applied to genomics provides an overview of the latest technologies and emphasizes its potential in answering important biological questions. Written by a physicist and a biologist, it offers a more comprehensive view than the previous literature. The book starts with key ideas in molecular biology, developmental biology and microtechnology before going on to cover the specifics of single cell analysis and microfluidic devices for single cell molecular analysis. Review chapters discuss the state-of-the art and will prove invaluable to all those planning to develop microdevices for molecular analysis of single cells. Methods allowing complete analysis of gene expression in the single cell are stressed - as opposed the more commonly used techniques that allow analysis of only a few genes at a time. As pioneers in the field, the authors understand how critical it is for a physicist to understand the biological issues and questions related to single cell analysis, as well for biologists to understand what microfluidics is all about. Aimed predominantly at graduate students, this book will also be of significant interest to scientists working in or affiliated with this field.
This volume contains 18 peer-reviewed papers based on the presentations at the 10th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2010) held at Kyoto University from July 26 to July 28, 2010. This workshop started in 2001 as an event for doctoral students and young researchers to present and discuss their research results and approaches in bioinformatics and systems biology. It is part of a collaborative educational program involving leading institutions and leaders committed to the following programs: * Boston Graduate Program in Bioinformatics, Boston University * Berlin The International Research Training Group (IRTG) "Genomics and Systems Biology of Molecular Networks" * Kyoto The JSPS International Training Program (ITP) "International Research and Training Program of Bioinformatics and Systems Biology" * Tokyo Global COE Program "Center of Education and Research for Advanced Genome-Based Medicine"
Bacterial Genomes provides an in-depth review of the latest research on the structure and stability of microbial genomes, and the techniques used to analyze and "fingerprint" them. Maps of a variety of microorganisms are featured, along with articles describing their construction and relevant features. Extensive tables summarizing the different types of techniques available to analyze the genomes of these microorganisms are also presented. Among those who will find this text most useful are genome researchers, microbiologists, molecular biologists, bacteriologists, infectious disease researchers, and molecular evolutionary biologists. Researchers and students working in the field of molecular evolution in general will also be interested in this book since microbes are such popular model systems.
Numerous and charismatic, the Lepidoptera is one of the most widely studied groups of invertebrates. Advances in molecular tools and genomic techniques have reduced the need for large sizes and mass-rearing, and lepidopteran model systems are increasingly used to illuminate broad-based experimental questions as well as those peculiar to butterflies and moths. Molecular Biology and Genetics of the Lepidoptera presents a wide-ranging collection of studies on the Lepidoptera, treating them as specialized insects with distinctive features and as model systems for carrying out cutting-edge research. Leading researchers provide an evolutionary framework for placing moths and butterflies on the Tree of Life. The book covers progress in deciphering the silkworm genome and unraveling lepidopteran sex chromosomes. It features new information on sex determination, evolution, and the development of butterfly wing patterns, eyes, vision, circadian clocks, chemoreceptors, and sexual communication. The contributors discuss the genetics and molecular biology of plant host range and prospects for controlling the major crop pest genus Helicoverpa. They also explore the rise of insecticide resistance, the innate immune response, lepidopteran minihosts for testing human pathogens and antibiotics, and the use of intrahemocoelic toxins for control. The book concludes with coverage of polyDNA virus-carrying parasitoid wasps, and the cloning of the first virus resistance gene in the silkworm. Understanding the biology and genetics of butterflies and moths may lead to new species-selective methods of control, saving billions of dollars in pesticide use and protecting environmental and human health-making the sections on strategies for pest management extremely important. This book will open up new paths to the research literature for a broad audience, including entomologists, evolutionary and systematic biologists, geneticists, physiologists, biochemists, and molecular biologists.
This volume contains papers presented at the 20th International Conference on Genome Informatics (GIW 2009) held at the Pacifico Yokohama, Japan from December 14 to 16, 2009. The GIW Series provides an international forum for the presentation and discussion of original research papers on all aspects of bioinformatics, computational biology and systems biology. Its scope includes biological sequence analysis, protein structure prediction, genetic regulatory networks, bioinformatic algorithms, comparative genomics, and biomolecular data integration and analysis. Boasting a history of 20 years, GIW is the longest-running international bioinformatics conference.A total of 18 contributed papers were selected for presentation at GIW 2009 and for inclusion in this book. In addition, this book contains abstracts from the five invited speakers: Sean Eddy (HHMI's Janelia Farm, USA), Minoru Kanehisa (Kyoto University, Japan), Sang Yup Lee (KAIST, Korea), Hideyuki Okano (Keio University, Japan) and Mark Ragan (University of Queensland, Australia).
DNA microarray technology has become a useful technique in gene expression analysis for the development of new diagnostic tools and for the identification of disease genes and therapeutic targets for human cancers. Appropriate control for DNA microarray experiment and reliable analysis of the array data are key to performing the assay and utilizing the data correctly. The most difficult challenge has been the lack of a powerful method to analyze the data for all genes (more than 30,000 genes) simultaneously and to use the microarray data in a decision-making process. In this book, the authors describe DNA microarray technology and data analysis by pointing out current advantages and disadvantages of the technique and available analytical methods. Crucially, new ideas and analytical methods based on the authors' own experience in DNA microarray study and analysis are introduced. It is believed that this new way of interpreting and analyzing microarray data will bring us closer to success in decision-making using the information obtained through the DNA microarray technology.
"Genomics in Asia" focuses on issues dealing with the development and application of molecular biology and bioengineering technologies in Asian societies and cultures. The workshop on which this book is based aimed to gain an insight into bioethical issues with relation to the dynamics of Asian societies, cultures and religions. It was to generate debate on Asian Genomics and create a basis for comparative research into the relationship between the development and application of modern genetics, cultural values, and local interests in Asian societies. The papers first of all reflect a great variety of bioethical views discussed from the angle of different disciplinary and cultural backgrounds, creating a basis on which a further comparison between different local knowledge systems in relation to genomic practices will be feasible. This book provides insights on research into the social, political and ethical aspects of genomics, and reflects the bioethical experiences of researchers from Japan, China, the Philippines, Thailand, Taiwan, Pakistan, India and Malaysia. The subjects of discussion vary from genetics in China to religious perspectives on cloning and genetic therapy. Themes include the commercial and medical application of new bioengineering technologies, such as the impact of preventive genetic medicine, genetic counselling, genetically modified organisms [GMOs] and stem-cell research on wealth distribution, cultural traditions, social well-being, and political and legal regulations and institutions. In the study of bioengineering in Asia, various perspectives were brought together at a concrete research level. The authors tried to avoid macro-concepts incorporated bydichotomies of East and West and to acquire new insights into the relationship between local knowledge systems and cultures and interests groups on the one hand and the constellation of various interests of scientific research, governments and MNCs on the other.
This book is an excellent introductory text describing the use of bioinformatics to analyze genomic and post-genomic data. It has been translated from the original popular French edition, which was based on a course taught at the well-respected Ecole Polytechnique in Palaiseau. This edition has been fully revised and updated by the authors. After a brief introduction to gene structure and sequence determination, it describes the techniques used to identify genes, their protein-coding sequences and regulatory regions. The book discusses the methodology of comparative genomics, using information from different organisms to deduce information about unknown sequences. There is a comprehensive chapter on structure prediction, covering both RNA and protein. Finally, the book describes the complex networks of RNA and protein that exist within the cell and their interactions, ending with a discussion of the simulation approaches that can be used to model these networks. Praise from the reviews: ""In context of the new developments the genomic era has brought, Bioinformatics: Genomics and Post-Genomics becomes a fundamental and indispensable resource for undergraduate and early graduate students...insightfully authored...will immensely help students...in establishing important foundations while shaping their careers."" NEWSLETTER, BRITISH SOCIETY OF CELL BIOLOGY
This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure.
This volume contains 31 peer-reviewed papers based on the presentations at the 7th International Annual Workshop on Bioinformatics and Systems Biology (IBSB 2007) held at the Human Genome Center, Institute of Medical Science, University of Tokyo from July 31 to August 2, 2007. This workshop started in 2001 as an event for doctoral students and young researchers to present and discuss their research results and approaches in bioinformatics and systems biology. It is part of a collaborative educational program involving leading institutions and leaders committed to the following programs and partner institutions:* Boston (Charles DeLisi) - Graduate Program in Bioinformatics, Boston University* Berlin (Herman-Georg Holzhutter) - The International Research Training Group (IRTG) "Genomics and Systems Biology of Molecular Networks"* Kyoto/Tokyo (Minoru Kanehisa/Satoru Miyano) - Joint Bioinformatics Education Program of Kyoto University and University of Tokyo.This volume is dedicated to the memory of Prof. Dr. Dr. h.c. Reinhart Heinrich, a former Professor at Humboldt University Berlin and a co-founder of this workshop.
This volume contains papers presented at the 18th International Conference on Genome Informatics (GIW 2007) held at the Biopolis, Singapore from December 3 to 5, 2007. The GIW Series provides an international forum for the presentation and discussion of original research papers on all aspects of bioinformatics, computational biology and systems biology. Its scope includes biological sequence analysis, protein folding prediction, gene regulatory network, clustering algorithms, comparative genomics, and text mining. Boasting a history of 18 years, GIW is likely the longest-running international bioinformatics conference.A total of 16 papers were selected for presentation at GIW 2007 and inclusion in this book. The notable authors include Ming Li (University of Waterloo, Canada), Minoru Kanehisa (Kyoto University, Japan), Vladimir Kuznetsov (Genome Institute of Singapore), Tao Jiang (UC Riverside, USA), Christos Ouzounis (European Bioinformatics Institute, UK), and Satoru Miyano (University of Tokyo, Japan). In addition, this book contains abstracts from the five invited speakers: Frank Eisenhaber (Bioinformatics Institute, Singapore), Sir David Lane (Institute of Molecular and Cell Biology, Singapore), Hanah Margalit (The Hebrew University of Jerusalem, Israel), Lawrence Stanton (Genome Institute of Singapore), and Michael Zhang (Cold Spring Harbor Laboratory, USA).
The results obtained from, and techniques used in, different fields of science, such as mathematics, physics and biology are selected, gathered and analyzed to provide an introduction to the developing field of research into the nonlinear physics of DNA. The DNA molecule, which has been traditionally studied by techniques developed through molecular biology, is considered here rather from a physicist's viewpoint, as a nonlinear dynamical system. This is a complimentary way of looking at the molecule, and is arrived at following both a theoretical analysis of interactions and motions in DNA, and as a result of interpretation of experimental data. It is shown that this "nonlinear physics" approach allows one to explain some of the mechanisms of DNA functioning, and that it can offer possibilities in the study and interpretation of genetic codes. This text introduces all those involved in the study of the DNA molecule from a traditional, molecular biology viewpoint, to some of the results and developments which have been realized using a nonlinear physics approach, and should also allow biologists, biochemists and physicists to continue to develop non-traditional techniques of investigating the DNA molecule.
Modern DNA microarray technologies have evolved over the past 25
years to the point where it is now possible to take many million
measurements from a single experiment. These two volumes, Parts A
& B in the Methods in Enzymology series provide methods that
will shepard any molecular biologist through the process of
planning, performing, and publishing microarray results.
This book focuses on the development and application of the latest
advanced data mining, machine learning, and visualization
techniques for the identification of interesting, significant, and
novel patterns in gene expression microarray data.
Despite rapidly expanding interest in potential applications of surrogate tissue analysis and intense competition to identify and validate biomarkers in appropriate surrogate tissues, very few peer reviewed publications describing the use of this approach have appeared in the scientific press. One of the first publications on this topic, Surrogate Tissue Analysis: Genomic, Proteomic, and Metabolomic Approaches describes initial applications and considerations for "omic" technologies in the field of surrogate tissue analysis. Highlighting important issues to consider when conducting profiling studies to identify novel biomarkers, the first section covers transcriptional approaches in surrogate tissues. It provides a review of important issues in peripheral blood profiling, summarizes results achieved when evaluations of various blood preparation platforms are used for the purpose of transcriptional profiling, and covers the relatively novel application of transcriptional profiling in neurological and oncological disease settings. The second section focuses on proteomic and protein-based methods for identifying markers in surrogate tissues, highlighting immunoassay and mass-spectrometry approaches for assessment of proteins in serum and other fluids, with a focus on the implications of protein-based biomarkers for detecting and monitoring early stages of cancer. The third section explores metabolomic approaches along with other novel molecular screens that can be applied in surrogate tissues to find biomarkers, and examines in detail the rapid development of metabolomics into a powerful technique for biomarker identification. The authors conclude with coverage of regulatory considerations, economic impact, and pan-omic strategies which will undoubtedly impact surrogate tissue analysis in the future. They explore current concepts in pan-omic approaches during drug development where a compendium of data generated by multiple profiling approaches are assessed and evaluated with its impact on the field of systems biology. The last chapter rounds out the coverage with a brief look ahead towards future analytical issues that will likely arise in the field of surrogate tissue analysis. The book is both an introduction to the various "omic" technologies in this young field and a fundamental reference for scientists interested in identifying biomarkers in surrogate tissues.
A thoroughly updated version of the successful first edition with a new chapter on Real-Time PCR, more prokaryotic applications, and more detail in the complex mutagenesis sections. Information on PCR applications in genomics and proteomics have been expanded and integrated throughout the text. There is also advice on available products and specific pointers to the most appropriate methods. As with the first edition, this will be an ideal practical introduction and invaluable guide to PCR and its applications.
Research into DNA and the development of powerful techniques to produce DNA profiles enable experts to appear in court and give compelling. scientific evidence in many types of case. This book gives the legal practitioner a complete account of the issues involved in taking DNA evidence into court. It helps lawyers to ask important and probing questions when faced with such evidence in court. This second edition has been thoroughly updated to take account of recent legislation and case law.
The functional properties of any molecule are directly related to,
and affected by, its structure. This is especially true for DNA,
the molecular that carries the code for all life on earth.
Technology for modifying the genotypes and phenotypes of insects and other arthropods has steadily progressed with the development of more precise and powerful methods, most prominently transgenic modification. For many insect pests, there is now almost unlimited ability to modify phenotypes to benefit human health and agriculture. Precise DNA modifications and gene drive have the power to make wild-type populations less harmful in ways that could never have been performed with previous transgenic approaches. This transition from primarily laboratory science to greater application for field use has also necessitated greater development of modeling, ethical considerations and regulatory oversight. The 2nd Edition of Transgenic Insects contains chapters contributed by experts in the field that cover technologies and applications that are now possible. This edition includes increased attention to associated challenges of risk assessment, regulation, and public engagement. Featuring: Up-to-date analysis of molecular techniques, such as gene editing. Consideration of public attitudes and regulatory aspects associated with transgenic insects. Many examples of the wide range of applications of transgenic insects. This book will be very valuable to students and researchers in entomology, molecular biology, genetics, public health and agriculture, and will also appeal to practitioners who are implementing the technology, and to regulators, stakeholders and ethicists.
Combining elements of biochemistry, molecular biology, and immunology, artificial DNA can be employed in a number of scientific disciplines. Some of the varied applications include site-specific mutagenesis, hybridization, amplification, protein engineering, anti-sense technology, DNA vaccines, protein vaccines, recombinant antibodies, screening for genetic and pathogenic diseases, development of materials with new biochemical and structural properties, and many more.
Providing an interface between dry-bench bioinformaticians and wet-lab biologists, DNA Methylation Microarrays: Experimental Design and Statistical Analysis presents the statistical methods and tools to analyze high-throughput epigenomic data, in particular, DNA methylation microarray data. Since these microarrays share the same underlying principles as gene expression microarrays, many of the analyses in the text also apply to microarray-based gene expression and histone modification (ChIP-on-chip) studies. After introducing basic statistics, the book describes wet-bench technologies that produce the data for analysis and explains how to preprocess the data to remove systematic artifacts resulting from measurement imperfections. It then explores differential methylation and genomic tiling arrays. Focusing on exploratory data analysis, the next several chapters show how cluster and network analyses can link the functions and roles of unannotated DNA elements with known ones. The book concludes by surveying the open source software (R and Bioconductor), public databases, and other online resources available for microarray research. Requiring only limited knowledge of statistics and programming, this book helps readers gain a solid understanding of the methodological foundations of DNA microarray analysis.
Supramolecular chemistry is the outburst topic of the next generation of science. While the majority of biomedical research efforts to date have centered on utilizing well-known polymeric materials, the recent progress in supramolecular chemistry has introduced a fascinating new field of macromolecular architecture. |
You may like...
Kinetic Boltzmann, Vlasov and Related…
Alexander Sinitsyn, Eugene Dulov, …
Paperback
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,065
Discovery Miles 40 650
|