Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > DNA
When setting out to decide on the content of DNA Repair Protocols: Prokaryotic Systems, I was conscious of the need to portray the vast array of pathways and enzymatic activities that are part of the discipline of DNA repair. In addition to the classical DNA repair activities, I wanted to convey the significant interest that has been generated in recent years in the use of the proteins and repair systems as research tools, much like the use of restriction enzymes over the last few decades. Therefore, in addition to chapters deta- ing protocols for investigating specific repair activities, I have included s- eral chapters in this book on the applied use of DNA repair proteins and systems. The many years of research on bacterial DNA repair systems have allowed us to really understand the majority of DNA repair pathways in bac- rial cells. Building on this knowledge, research has lead to major advances in understanding mammalian DNA repair and uncovered its links to human d- ease, such as DNA mismatch repair and colon cancer, nucleotide excision repair and xeroderma pigmentosum, DNA helicase function in Bloom's s- drome, and so on. Such have been the advances that Science magazine iden- fied the collective DNA repair systems as its "Molecule of the Year" in 1994.
A comprehensive treatment of the characterisation techniques used in investigating inorganic and organic molecules that interact with biomolecules is presented to the reader in a clear fashion. The work consists of two parts: (i) synthetic aspects of metallointercalators along with targeting and improving transport and (ii) the various techniques that are used for probing their interactions, such as; DNA-NMR, PGSE-NMR, DNA ESI-MS, Linear and Circular Dichroism, Fluorescence Spectroscopy, Confocal Microscopy, Viscosity, TGA and dialysis, Microarrays, biological analysis. Chapters are devoted to the synthesis and the techniques used to study the interactions of inorganic complexes with biomolecules. Considerably detailed examples are used to help illustrate the application of these techniques. This book is a useful resource for an array of inorganic and organic advanced undergraduate and graduate courses and for researchers in drug discovery.
Beginning with the Escherichia coli co protein, or bacterial DNA topoisomerase I, an ever-increasing number of enzymes has been identified that catalyze changes in the linkage of DNA strands. DNA topoisomerases are ubiquitous in nature and have been shown to play critical roles in most p- cesses involving DNA, including DNA replication, transcription, and rec- bination. These enzymes further constitute the cellular targets of a number of clinically important antibacterial and anticancer agents. Thus, further studies of DNA topology and DNA topoisomerases are critical to advance our und- standing of the basic biological processes required for cell cycle progression, cell division, genomic stability, and development. In addition, these studies will continue to provide critical insights into the cytofoxic action of drugs that target DNA topoisomerases. Such mechanistic studies have already played an important role in the development and clinical application of antimicrobial and chemotherapeutic agents. The two volumes of DNA Topoisomerase Protocols are designed to help new and established researchers investigate all aspects of DNA topology and the function of these enzymes. The chapters are written by prominent investigators in the field and provide detailed background information and st- by-step experimental protocols. The topics covered in Volume I; DNA Topology and Enzymes, range from detailed methods to analyze various aspects of DNA structure, from linking number, knotting/unknotting, site-specific recombi- tion, and decatenation to the overexpression and purification of bacterial and eukaryotic DNA topoisomerases from a variety of cell systems and tissues.
Genetic recombination, in the broadest sense, can be defined as any process in which DNA sequences interact and undergo a transfer of information, producing new "recombinant" sequences that contain information from each of the original molecules. All organisms have the ability to carry out recombination, and this striking universality speaks to the essential role recombination plays in a variety of biological processes fundamentally important to the maintenance of life. Such processes include DNA repair, regulation of gene expression, disease etiology, meiotic chromosome segregation, and evolution. One important aspect of recombination is that it typically occurs only between sequences that display a high degree of sequence identity. The stringent requirement for homology helps to ensure that, under normal circumstances, a cell is protected from deleterious rearrangements since a swap of genetic information between two nearly identical sequences is not expected to dramatically alter a genome. Recombination between dissimilar sequences, which does happen on occasion, may have such harmful consequences as chromosomal translocations, deletions, or inversions. For many organisms, it is also important that recombination rates are not too high lest the genome become destabilized. Curiously, certain organisms, such as the trypanosome parasite, actually use a high rate of recombination at a particular locus in order to switch antigen expression continually and evade the host immune system effectively.
Damage to DNA by both exogenous and endogenous sources is increasingly regarded as highly important in the initiation and progression of cancer and in the occurance of other pathological events. DNA damage caused by reactive oxygen-derived species, also called oxidative DNA damage, is most the frequent type encountered by aerobic cells. Mechanistic studies of carcinogenesis indicate an important role of this type of damage to DNA. There is also strong evidence to support the role of oxidative DNA damage in the aging process. DNA damage is opposed in vivo by repair systems. If not repaired, DNA damage may lead to detrimental biological consequences. Therefore, the repair of DNA damage is regarded as one of the essential events in all life forms. In recent years the field of DNA repair has flourished due to new findings on DNA repair mechanisms and the molecular basis of cancer. A detailed knowledge of mechanisms of DNA damage and repair, and how individual repair enzymes function may lead to manipulation of DNA repair in cells and ultimately to an increase of the resistence of human cells to DNA-damaging agents. This volume covers the most recent devlopments in this research field and contains contributions from scientists working in the fields of biochemistry, molecular biology, enzymology, biomedical science, and radiation biology.
Ancient DNA Typing is a comprehensive manual about the analysis of ancient and degraded DNA. It is an equally useful textbook and working tool for various disciplines such as: Anthropology, Archaeology, Forensic Medicine, Conservation Biology, Environmental Sciences and Food Engineering.The reader benefits from a clear division of strategies, methods and applications with many interesting examples of the analysis of historic skeletal and cultural remains. The book contains a detailed protocol chapter which serves as a lab manual with the most important methods for DNA extraction, PCR and electrophoretic analysis of degraded samples. The appendix helps to set up a PCR lab specializing in ancient DNA research and answers the most frequent questions concerning technical problems in investigations of degraded DNA.
This book examines the increasing significance of DNA profiling for crime investigation in modern society. It focuses on developments in the UK as the world-leader in the development and application of forensic DNA technology, and in the construction of DNA databases as an essential element in the successful use of DNA for forensic purposes. The book uses data collected from funded research into police uses of the UK National DNA Database (NDNAD) to describe the relationship between scientific knowledge and police investigations. It refers to some of the major UK criminal cases in which DNA evidence has been presented and contested. Chapters in the book explain the scientific developments which have enabled DNA profiling to be applied to criminal investigation, the ways in which the state has directed this, and how genetic technology has risen to such preeminence; how DNA evidence moved from its use in individual prosecutions to a major role in intelligence led policing, and saw the de
Bioinformatics of Genome Regulation and Structure covers: -regulatory genomic sequences: databases, knowledge bases,
computer analysis, modeling, and recognition;
Epigenetics and Reproductive Health, a new volume in the Translational Epigenetics series, provides a thorough overview and discussion of epigenetics in reproduction and implications for reproductive medicine. Twenty international researchers discuss epigenetic mechanisms operating during the formation of male and female gametes, fertilization and subsequent embryo and placental development, particularly in mammals and transgenerational epigenetic inheritance. This volume also addresses aberrant epigenetic changes influencing male and female infertility, pregnancy related disorders, and those potentially linked to therapeutic manipulations and assisted reproductive technologies. Emphasis is placed on identifying biomarkers for early detection of aberrant epigenetic mechanisms. Later chapters examine the possibility of correcting these epigenetic dysfunctions, as well as current challenges and next steps in research, enabling new translational discoveries and efforts towards developing therapeutics.
Over the last decade Life Science has undergone an accelerated evolution, culminating in the -omics era characterized by the development of a multitude of high throughput methods that are becoming more routinely applied in biochemistry labs. In Functional Genomics: Methods and Protocols, Second Edition expert researchers in the field detail many of the methods which are now commonly used for studies in the life sciences focusing on the dynamic aspects of the transcriptome, proteome and metabolome, respectively.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Functional Genomics: Methods and Protocols, Second Edition seeks to aid scientists in establishing or extending technologies and techniques in their laboratories.
Protocols for Nucleic Acid Analysis by Non-radioactive Probes,
Second Edition provides a firm background on the basic preparative
protocols required for the analysis of nucleic acids by
nonradioactive methods. Presenting the methodologies using amazing
new applications, this volume offers guide chapters on nucleic acid
extractions, preparation of nucleic acid blots, and labeling of
nucleic acids with nonradioactive haptens. New fluorescent
techniques such as Real Time PCR and microarrays are also included,
allowing users to get a nonradioactive protocol implemented in the
laboratory with minimum adaptation required and fastest time to
results.
This volume is divided in four sections; covering genome wide approaches, techniques for characterize of paRNA structural features are described, selecting pa-RNA, and paRNA therapeutic potential. Chapters describe how siRNAsdirected against paRNAs can be applied in vivo to modulate transcription of important genes controlled by paRNAs. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Promoter Associated RNA: Methods and Protocols aims to demonstrate paRNAs as new class of regulatory molecules, to further investigate and value as tools for fine transcriptional tuning.
In the past few years, antisense methodology has moved from in vitro studies to in vivo studies and first human trials. While the basic concept of antisense technology is simple, the methodological problems associated with its use are numerous and complex. Antisense- based methods have proven to be a field of research where careful attention to experimental protocols and appropriate controls is necessary. The Manual of Antisense Methodology emphasizes the application of antisense oligonucleotides, and is a guide for the identification of antisense and non-antisense effects in different experimental settings. The work is organized into three sections: antisense application in vitro, antisense application in vivo (animal models) and finally, clinical antisense studies. Where at all possible, the methods are described in sufficient detail to allow reproduction of a given experiment. The Manual of Antisense Methodology will be of interest to researchers in immunology, cancer research, pharmacology and internal medicine; and physicians conducting clinical studies in these fields.
Y.A. Berlin, I.V. Kurnikow, D. Beratan, M.A. Ratner, A.L. Burin: DNA Electron Transfer Processes: Some Theoretical Notions; N. Rosch, A.A. Voityuk: Quantum Chemical Calculation of Donor-Acceptor Coupling for Charge Transfer in DNA; E. Conwell: Polarons and Transport in DNA; Z. Cai, M.D.
Quantitative trait locus (QTL) mapping is used to discover the genetic and molecular architecture underlying complex quantitative traits. It has important applications in agricultural, evolutionary, and biomedical research. R/qtl is an extensible, interactive environment for QTL mapping in experimental crosses. It is implemented as a package for the widely used open source statistical software R and contains a diverse array of QTL mapping methods, diagnostic tools for ensuring high-quality data, and facilities for the fit and exploration of multiple-QTL models, including QTL x QTL and QTL x environment interactions. This book is a comprehensive guide to the practice of QTL mapping and the use of R/qtl, including study design, data import and simulation, data diagnostics, interval mapping and generalizations, two-dimensional genome scans, and the consideration of complex multiple-QTL models. Two moderately challenging case studies illustrate QTL analysis in its entirety. The book alternates between QTL mapping theory and examples illustrating the use of R/qtl. Novice readers will find detailed explanations of the important statistical concepts and, through the extensive software illustrations, will be able to apply these concepts in their own research. Experienced readers will find details on the underlying algorithms and the implementation of extensions to R/qtl. There are 150 figures, including 90 in full color.
With its modern chapter organization and new Focus on Genomics boxes, iGenetics: A Molecular Approach reflects the increasing molecular emphasis in today's experimental study of genes while helping students develop problem-solving skills and an appreciation for classic experiments. Although molecular topics are presented first, instructors can assign the chapters in any sequence. Pedagogical features such as chapter-opening Key Questions and strategically placed Keynotes help students to efficiently master genetic concepts. The Genetics Place Companion Website contains interactive iActivities and narrated animations that help students visualize and understand processes and concepts that are illustrated in the text.
The recent progress achieved in aquatic genomics research has important implications in science and aquaculture. Researchers' success in genome sequencing of the fugu has provided a foundation not only for comparative fish genomics but also for genetic studies of other vertebrates. This volume, with contributions by leading scientists from around the world, provides the latest information on genomic studies of a variety of aquatic organisms including fish, crustaceans, and shellfish, with descriptions of such methodologies as genome analysis, gene mapping, DNA markers, and EST analysis. Other topics include regulation of gene expression, stress and immune responses, sex differentiation, hormonal control, and transgenic fish. This book is a valuable resource for all scientists whose work involves aquatic organisms, especially for those in the fields of aquatic genomics, fish immunology, and aquatic biotechnology.
Introduction The goal of this book is to introduce XML to a bioinformatics audience. It does so by introducing the fundamentals of XML, Document Type De?nitions (DTDs), XML Namespaces, XML Schema, and XML parsing, and illustrating these concepts with speci?c bioinformatics case studies. The book does not assume any previous knowledge of XML and is geared toward those who want a solid introduction to fundamental XML concepts. The book is divided into nine chapters: Chapter 1: Introduction to XML for Bioinformatics. This chapter provides an introduction to XML and describes the use of XML in biological data exchange. A bird's-eye view of our ?rst case study, the Distributed Annotation System (DAS), is provided and we examine a sample DAS XML document. The chapter concludes with a discussion of the pros and cons of using XML in bioinformatic applications. Chapter 2: Fundamentals of XML and BSML. This chapter introduces the fundamental concepts of XML and the Bioinformatic Sequence Markup Language (BSML). We explore the origins of XML, de?ne basic rules for XML document structure, and introduce XML Na- spaces. We also explore several sample BSML documents and visualize these documents in the TM Rescentris Genomic Workspace Viewer.
The primary purpose of this volume is to demonstrate the range of applications of the Pyrosequencing technology in research and diagnostics and to provide detailed protocols. Beginning with an up-to-date overview of the biochemistry, the volume continues with quantitative analysis of genetic variation, ratio of expressed alleles at the RNA level, analysis of DNA methylation, global DNA methylation assays, specialized applications for DNA methylation analysis including loss of imprinting, single blastocyst analysis, allele-specific DNA methylation patterns, DNA methylation patterns associated with specific histone modifications. The volume further details tools and protocols for the detection of viruses and bacteria, and genetic and epigenetic analyses for forensics using Pyrosequencing. As a volume in the highly successful Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and tips on troubleshooting and avoiding known pitfalls. Comprehensive and adaptable, Pyrosequencing: Methods and Protocols, Second Edition will greatly aid doctorial students, postdoctoral investigators and research scientists studying different aspects of genetics and cellular and molecular biology.
Information is central to the evolution of biological complexity, a physical system relying on a continuous supply of energy. Biology provides superb examples of the consequent Darwinian selection of mechanisms for efficient energy utilisation. Genetic information, underpinned by the Watson-Crick base-pairing rules is largely encoded by DNA, a molecule uniquely adapted to its roles in information storage and utilisation.This volume addresses two fundamental questions. Firstly, what properties of the molecule have enabled it to become the predominant genetic material in the biological world today and secondly, to what extent have the informational properties of the molecule contributed to the expansion of biological diversity and the stability of ecosystems. The author argues that bringing these two seemingly unrelated topics together enables Schroedinger's What is Life?, published before the structure of DNA was known, to be revisited and his ideas examined in the context of our current biological understanding.
In this volume, internationally recognized 'Neurospora' experts critically review the most important research and demonstrate the breadth of applications to industrial biology, biofuels, agriculture, and human health.
Genome Exploitation: Data Mining the Genome is developed from the 23rd Stadler Genetic Symposium. This volume discusses and illustrates how scientists are going to characterize and make use of the massive amount of information being accumulated about the plant and animal genomes. Genome Exploitation: Data Mining the Genome is a state-of-the-art picture on mining the Genome databases. This is one of the few times that researchers in both plants and animals will be working together to create a seminal data resource.
This comprehensive yet balanced work emphasizes the principles and rationale underlying recombinant DNA methodology while furnishing a general understanding of the experimental protocols-suggesting flexible approaches to resolving particular molecular necessities that are easily adaptable to readers' specific applications. Features summary tables presenting at-a-glance information on practices of recombinant DNA methodologies! Recombinant DNA Principles and Methodologies discusses basic and advanced topics requisite to the employment of recombinant DNA technology, such as -plasmid biology -nucleic acid biochemistry -restriction enzymes -cloning strategies -gel electrophoresis -southern and northern blotting -preparation of probes -phage lambda biology -cosmids and genome analysis -cloned gene expression -polymerase chain reaction -conventional and automated DNA sequencing -site-directed mutagenesis -and more! Elucidating the material with over 2250 edifying references, equations, drawings, and photographs, this state-of-the-art resource is a valuable hands-on guide for molecular and cell biologists, biochemists, bioprocess technologists, applied and industrial microbiologists, virologists, geneticists, chemical engineers, and upper-level undergraduate and graduate students in these disciplines. |
You may like...
The Soybean Genome
Henry T. Nguyen, Madan Kumar Bhattacharyya
Hardcover
R5,297
Discovery Miles 52 970
Breeding Grasses and Protein Crops in…
Gintaras Brazauskas, Grazina Statkeviciute, …
Hardcover
R1,915
Discovery Miles 19 150
DNA Replication - Methods and Protocols
Sonya Vengrova, Jacob Dalgaard
Hardcover
Brucella - Molecular Microbiology and…
I. Lopez-Goni, David O'Callaghan
Hardcover
R5,530
Discovery Miles 55 300
|