![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > DNA
Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Perinatal and Reproductive Genetics, Seventh Edition includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies in this growing field. The book is ideal for medical students, residents, physicians and researchers involved in the care of patients with genetic conditions. This comprehensive, yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. Chapters from leading international researchers and clinicians focus on topics ranging from single gene testing to whole genome sequencing, whole exome sequencing, gene therapy, genome editing approaches, FDA regulations on genomic testing and therapeutics, and ethical aspects of employing genomic technologies.
he book deals essentially with the aspects that are of immediate concern to new researchers in the filed of botanicals and natural products. It presents the first comprehensive overview of the plant products since they were introduces in the pest management covering both theoretical and practical applications. This book covers the key aspects of the plant products including ; natural pest management agents from plant, extraction of plant products, characterization and formulation and bioassay of extracts, a study on the stability of the prepared extracts towards their various biological activity against different microbial and stored grain pests through a large number of the prepared extracts and formulations in both water and organic media.
Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability.
Reciprocity in Population Biobanks: Relational Autonomy and the Duty to Inform in the Genomic Era begins by discussing how current judicial interpretation keeps standard of disclosure at the core of genomic research. The book then outlines multiple limitations individualistic autonomy faces in the context of gene and population biobanks, including an analysis of the complexities of benefit considerations in the research setting. Second, the book explores how individualistic autonomy fails to acknowledge the multilateral relationships implicated in genomic research, including those that affect the broader research community, research participants' families, and the general public. In carrying out this analysis, this book pays special attention to alternative approaches and ways researchers, public health officials, and judicial bodies might interact in years to come. In other words, implementing an understanding of relational autonomy that acknowledges and sustains the multilateral relationships found in genomic research without compromising the rights of participants. In short, this book proposes a reconceived duty to inform for researchers and a new standard of disclosure that is more meaningful and impactful for research participants and researchers.
Epigenetics and Metabolomics, a new volume in the Translational Epigenetics series, offers a synthesized discussion of epigenetic control of metabolic activity, and systems-based approaches for better understanding these mechanisms. Over a dozen chapter authors provide an overview of epigenetics in translational medicine and metabolomics techniques, followed by analyses of epigenetic and metabolomic linkage mechanisms likely to result in effective identification of disease biomarkers, as well as new therapies targeting the removal of the inappropriate epigenetic alterations. Epigenetic interventions in cancer, brain damage, and neuroendocrine disease, among other disorders, are discussed in-depth, with an emphasis on exploring next steps for clinical translation and personalized healthcare.
In recent years, knowledge of epigenetic mechanisms underlying disease onset and progression has proven crucial for the development of novel early diagnosis and prognosis biomarkers for patient stratification and precision medicine. Epigenetics in Precision Medicine, a new volume in the Translational Epigenetics series, provides a thorough discussion and overview of current developments in clinical epigenetics with special emphasis on epigenetic biomarkers that can be used for clinical diagnosis, prognosis, patient stratification, and treatment monitoring. Disease types discussed include cancer, metabolic disorders, neurodegenerative diseases, bone disease, and immune-related disorders. The book examines the challenges of advancing epigenetics research and translating findings to the clinic and drug discovery in each of these areas, as well as current solutions; chapter authors discuss how to leverage epigenomic technologies, applications, and tools, such as next-generation sequencing, to discover new epigenetic biomarkers in disease and drug studies. Epigenetics in Precision Medicine focuses on complex epigenetic mechanisms in several pathologies, and explores how epigenetics can power the advance of precision medicine, not only by improving in vitro diagnostic and prognostic tools, but by providing new therapeutic approaches to treat human disease.
Exploring Genome's Junkyard: In the Labyrinth of Evolution narrates the progress of biological evolution, beginning with the conceptual introspection of gene and continuing with the contemporary understanding of the structural and function aspects of the human genome. Recent advances in human genome research have led scientists to the term "biological dark matter," which refers to genetic material whose functionalities are not yet properly understood. Such "dark matter" has been recognized as non-coding, or "junk DNA," and non-coding RNA, which was thought to be devoid of protein encrypting potential but contained 98-99% of the human genome. The mysteries of missing genes from its "Dark DNA" region are a hotbed of recurrent mutations. Hence, the presence of "missing genes" in evolutionary sibling species has indicated that the "missing genes" are not really missing but rather hidden in the mutational hotbeds of "Dark DNA" where they have steered the continuation of life's evolutionary journey.
Brucella is a genus of Gram-negative, facultative, intracellular bacteria that are highly pathogenic for a variety of mammals, including humans. Recently the WHO cited brucellosis to be the world's most widespread zoonosis. An important feature of the pathogenicity of these organisms is their ability to survive and replicate within the host macrophages. However the mechanism for this is unclear. In addition, none of the classical bacterial virulence factors found in other bacterial pathogens have been found in the genomes of the forty Brucella species and biovars analysed to date. Nevertheless the application of systems biology approaches in recent years has transformed research, permitting fascinating new insights into Brucella molecular biology and genomics. Written by highly acclaimed Brucella scientists, this book comprehensively reviews the most important advances in the field. Opening chapters focus on genetic diversity within Brucella, covering both classical and new species. Pa
Genomics of Rare Diseases: Understanding Disease Genetics Using Genomic Approaches, a new volume in the Translational and Applied Genomics series, offers readers a broad understanding of current knowledge on rare diseases through a genomics lens. This clear understanding of the latest molecular and genomic technologies used to elucidate the molecular causes of more than 5,000 genetic disorders brings readers closer to unraveling many more that remain undefined and undiscovered. The challenges associated with performing rare disease research are also discussed, as well as the opportunities that the study of these disorders provides for improving our understanding of disease architecture and pathophysiology. Leading chapter authors in the field discuss approaches such as karyotyping and genomic sequencing for the better diagnosis and treatment of conditions including recessive diseases, dominant and X-linked disorders, de novo mutations, sporadic disorders and mosaicism.
Epigenetics in Cardiovascular Disease, a new volume in the Translational Epigenetics series, offers a comprehensive overview of the epigenetics mechanisms governing cardiovascular disease development, as well as instructions in research methods and guidance in pursing new studies. More than thirty international experts provide an (i) overview of the epigenetics mechanisms and their contribution to cardiovascular disease development, (i) high-throughput methods for RNA profiling including single-cell RNA-seq, (iii) the role of nucleic acid methylation in cardiovascular disease development, (iv) epigenetic actors as biomarkers and drug targets, (v) and the potential of epigenetics to advance personalized medicine. Here, readers will discover strategies to combat research challenges, improve quality of their epigenetic research and reproducibility of their findings. Additionally, discussion of assay and drug development for personalized healthcare pave the way for a new era of understanding in cardiovascular disease.
Histone Modifications in Therapy provides an in-depth analysis of the role of histone mechanisms in major diseases and the promise of targeting histone modifications for disease prevention and treatment. Here, researchers, clinicians and students will discover a thorough, evidence-based discussion of the biology of histones, the diseases engaged by aberrant histone modifications, and pathways with therapeutic potential. Expert chapter addresses the role of histone modifications across a variety of disorders, including cancer, neuropsychiatric, neurodegenerative, cardiac, metabolic, infectious, bacterial, autoimmune and inflammatory disorders, among others. In relation to these disease types, histone modifications are discussed, both as mechanisms of prevention and possible treatment. A concluding chapter brings together future perspectives for targeting histone modifications in therapy and next steps in research.
Developmental Human Behavioral Epigenetics: Principles, Methods, Evidence, and Future Directions, Volume 23, a new volume in the Translational Epigenetics series, offers the first systematic account of theoretical G79 frameworks, methodological approaches, findings, and future directions in the field of human behavioral epigenetics. Featuring contributions from leading scientists and international researchers, this book provides a comprehensive overview of human behavioral epigenetics, with a close examination of evidence gathered to-date from animal models, challenges of human-based research and clinical translation, pathways towards drug discovery, and next steps in research. Areas of focus include prenatal stress exposures, preterm behavioral epigenetics, intergenerational exposures, trauma and neglect, socio-economic conditions, maternal caregiving and attachment, study design, and epigenetics and psychotherapy.
Environmental Epigenetics in Toxicology and Public Health provides in-depth discussions of the suite of complex environmental factors shown to impact epigenetic components within the cell, as well as evidence that these epigenetic modifications are tied to early and later life health effects. This book offers a translational research perspective, highlighting both in vivo and human population-based evidence for ties between the environment, the epigenome, and health outcomes, with an emphasis on evidence for transgenerational effects of exposures, as well as developmental windows of susceptibility to environmentally-linked epigenetic effects. This volume in the Translational Epigenetics series aides in the development of new therapeutic options meant to reverse inappropriate epigenetic alterations, helping researchers in their efforts prevent and treat a variety of chronic diseases tied to environmental exposures.
Responsible Genomic Data Sharing: Challenges and Approaches brings together international experts in genomics research, bioinformatics and digital security who analyze common challenges in genomic data sharing, privacy preserving technologies, and best practices for large-scale genomic data sharing. Practical case studies, including the Global Alliance for Genomics and Health, the Beacon Network, and the Matchmaker Exchange, are discussed in-depth, illuminating pathways forward for new genomic data sharing efforts across research and clinical practice, industry and academia.
Secondary Findings in Genomic Research offers a single, highly accessible resource on interpreting, managing and disclosing secondary findings in genomic research. With chapters written by experts in the field, this book is the first to concisely explain the ethical and practical issues raised by secondary genomics findings for a multi and interdisciplinary audience of genomic researchers, translational scientists, clinicians, medical students, genetic counselors, ethicists, legal experts and law students, public policy specialists and regulators. Contributors from Europe, North America, and Asia effectively synthesize perspectives from a spectrum of different scientific, societal, and global contexts, and offer pragmatic approaches to a range of topics, including oversight, governance and policy surrounding secondary genomic results, criteria for identifying results for return, communication and consent, stakeholders' attitudes and perspectives, disclosing results, and clinical, patient-centered protocols.
Microbiomics: Dimensions, Applications, and Translational Implications of Human and Environmental Microbiome Research describes a new, holistic approach to microbiomics. International experts provide in-depth discussion of current research methods for studying human, environmental, viral and fungal microbiomes, as well as the implications of new discoveries for human health, nutrition, disease, cancer research, probiotics and in the food and agricultural industries. Distinct chapters covering culturomics and sub-microbiomes, such as the viriome and mycetobiome, provide an integrative framework for the expansion of microbiomics into new areas of application, as well as crosspollination between research areas. Detailed case studies include the use of microbiomics to develop natural products with antimicrobial properties, microbiomic enhancements in food and beverage technology, microbes for bioprotection and biopreservation, microbial tools to reduce antibiotic resistance, and maintenance and cultivation of human microbial communities.
This volume provides comprehensive information on how mapping an individual's epigenome can be medically relevant and holds the potential to improve preventive medicine and precision therapeutics at an early-stage (prior to disease onset). In order to advance clinical adoption of the recently developed epigenetic approaches, it is necessary for translational scientists, clinicians, and students to gain a better understanding about epigenetic mechanisms that are associated with a particular disorder; and to be able to effectively identify biomarkers that can be applied in drug development and for better diagnosis and prognosis of diseases. Prognostic Epigenetics is the most-inclusive volume to-date specifically dedicated to epigenetic markers that have been developed for prognosis of diseases, recent advances in this field, the clinical implementation of this research, and the future outlook.
Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Cardiovascular, Respiratory, and Gastrointestinal Disorders, Seventh Edition includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies. This comprehensive, yet practical, resource emphasizes theory and research fundamentals relating to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine. Updated sections in this release cover the genetics of cardiovascular, respiratory and gastrointestinal disorders, with an emphasis on genetic determinants and new pathways for diagnosis, prevention and disease management. In addition, genetic researchers, students and health professionals will find new and fully revised chapters on the molecular genetics of congenital heart defects, inherited cardiomyopathies, hypertension, cystic fibrosis, asthma, hereditary pulmonary emphysema, inflammatory bowel disease, and bile pigment metabolism disorders among other conditions.
Translational Systems Medicine and Oral Disease bridges the gap between discovery science and clinical oral medicine, providing opportunities for both the scientific and clinical communities to understand how to apply recent findings in cell biology, genomic profiling, and systems medicine to favorably impact the diagnosis, treatment and management of oral diseases. Fully illustrated chapters from leading international contributors explore clinical applications of genomics, proteomics, metabolomics, microbiomics and epigenetics, as well as analytic methods and functional omics in oral medicine. Disease specific chapters detail systems approaches to periodontal disease, salivary gland diseases, oral cancer, bone disease, and autoimmune disease, among others. In addition, the book emphasizes biological synergisms across disciplines and their translational impact for clinicians, researchers and students in the fields of dentistry, dermatology, gastroenterology, otolaryngology, oncology and primary care.
Transgenerational Epigenetics, Second Edition, offers the only up-to-date, comprehensive analysis of the inheritance of epigenetic phenomena between generations with an emphasis on human disease relevance, drug discovery, and next steps in clinical translation. International experts discuss mechanisms of epigenetic inheritance, its expression in animal and plant models, and how human ailments, such as metabolic disorders and cardiovascular disease are influenced by transgenerational epigenetic inheritance. Where evidence is sufficient, epigenetic clinical interventions are proposed that may help prevent or reduce the severity of disease before offspring are born. This edition has been thoroughly revised in each disease area, featuring newly researched actors in epigenetic regulation, including long noncoding RNA in addition to histone modifications and DNA methylation. Therapeutic pathways in treating cancer and extending human longevity are also considered, as are current debates and future directions for research.
Mitochondrial Medicine: A Primer for Health Care Providers and Translational Researchers is an applied, holistic resource that addresses the evolving and multidisciplinary area of mitochondrial disease. The book discusses the fundamentals of mitochondrial medicine in humans, as well as the pathophysiology, diagnosis and treatment of mitochondrial diseases. Three all-inclusive sections examine the role of mitochondria in common medical conditions, such as diabetes, heart failure and the full range of inherited mitochondrial diseases. Sections cover the genetic and biochemical basis of both mitochondrial DNA deletion syndromes and point mutation syndromes, their clinical presentation, treatment plans, genetic counseling, prenatal testing, and ongoing research. While providing a solid foundation in its topic area, each chapter in the book is written in an accessible format with illustrative case studies, thus making it a quick bedside or clinical laboratory reference.
Nutritional Epigenomics offers a comprehensive overview of nutritional epigenomics as a mode of study, along with nutrition's role in the epigenomic regulation of disease, health and developmental processes. Here, an expert team of international contributors introduces readers to nutritional epigenomic regulators of gene expression, our diet's role in epigenomic regulation of disease and disease inheritance, caloric restriction and exercise as they relate to recent epigenomic findings, and the influence of nutritional epigenomics over circadian rhythms, aging and longevity, and fetal health and development, among other processes. Disease specific chapters address metabolic disease (obesity and diabetes), cancer, and neurodegeneration, among other disorders. Diet-gut microbiome interactions in the epigenomic regulation of disease are also discussed, as is the role of micronutrients and milk miRNAs in epigenetic regulation. Finally, chapter authors examine ongoing discussions of race and ethnicity in the social-epigenomic regulation of health and disease.
Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine.
For decades, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics has served as the ultimate resource for clinicians integrating genetics into medical practice. With detailed coverage in contributions from over 250 of the world's most trusted authorities in medical genetics and a series of 11 volumes available for individual sale, the Seventh Edition of this classic reference includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies to complete its coverage of this growing field for medical students, residents, physicians, and researchers involved in the care of patients with genetic conditions. This comprehensive yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. Clinical Principles and Applications thoroughly addresses general methods and approaches to genetic counseling, genetic diagnostics, treatment pathways, and drug discovery. Additionally, new and updated chapters explore the clinical implementation of genomic technologies, analytics, and therapeutics, with special attention paid to developing technologies, common challenges, patient care, and ethical and legal aspects. With regular advances in genomic technologies propelling precision medicine into the clinic, the seventh edition of Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics bridges the gap between high-level molecular genetics and practical application and serves as an invaluable clinical tool for the health professionals and researchers.
This book provides an up-to-date review and analysis of the carrot's nuclear and organellar genome structure and evolution. In addition, it highlights applications of carrot genomic information to elucidate the carrot's natural and agricultural history, reproductive biology, and the genetic basis of traits important in agriculture and human health. The carrot genome was sequenced in 2016, and its relatively small diploid genome, combined with the fact that it is the most complete root crop genome released to date and the first-ever Euasterid II genome to be sequenced, mean the carrot has an important role in the study of plant development and evolution. In addition, the carrot is among the top ten vegetables grown worldwide, and the abundant orange provitamin A carotenoids that account for its familiar orange color make it the richest crop source of vitamin A in the US diet, and in much of the world. This book includes the latest genetic maps, genetic tools and resources, and covers advances in genetic engineering that are relevant for plant breeders and biologists alike. |
You may like...
|