![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > DNA
he book deals essentially with the aspects that are of immediate concern to new researchers in the filed of botanicals and natural products. It presents the first comprehensive overview of the plant products since they were introduces in the pest management covering both theoretical and practical applications. This book covers the key aspects of the plant products including ; natural pest management agents from plant, extraction of plant products, characterization and formulation and bioassay of extracts, a study on the stability of the prepared extracts towards their various biological activity against different microbial and stored grain pests through a large number of the prepared extracts and formulations in both water and organic media.
Scientific Principles of Adipose Stem Cells provides readers with in-depth and expert knowledge on adipose stem cells, their developmental biologic origins, foundational research on ASC signaling mechanisms and immunomodulatory properties, and clinical insights into applications in regenerative medicine. Topics covered include basic adipose stem cell developmental biology and mechanisms of regulating self-renewal and activation in the stem cell niche, important methods for isolation and characterizing ASCs, and data on the impact on human demographics (age, sex, BMI) on ASC phenotype. A section devoted to ASC biology, ASCs for stem cell therapy and regenerative medicine, and ASCs in tissue engineering applications are also included. The book is written for scientists and clinicians who are broadly familiar with stem cells and basic cell biology principles and those seeking advanced information on adipose stem cells.
Medical Epigenetics, Second Edition provides a comprehensive analysis of epigenetics in health management, across a broad spectrum of disease categories and specialties, and with a focus on human systems, epigenetic diseases that affect these systems, and evolving modes of epigenetic-based treatment. Here, more than 40 leading researchers examine how each human system is affected by epigenetic maladies, offering an all-in-one resource on medical epigenetics not only for those directly involved with health care, but investigators in life sciences, biotech companies, graduate students, and others who are interested in applied aspects of epigenetics. Incorporating both diagnostic and prognostic epigenetic approaches, this volume also fully supports the application of epigenetics in precision medicine. This second edition of Medical Epigenetics, a volume in the Translational Epigenetics series, has been fully revised to address recent advances in disease epigenetics and role of epigenetics in precision medicine, with all-new chapters on skin cancer epigenetics, network analysis in medical epigenetics, machine learning in epigenetic diseases, and clinical trials of epigenetics drugs.
Twin and Family Studies of Epigenetics, Volume 27, the latest release in the Translational Epigenetics series, gathers expert opinions on epigenetic twin and family study research methods, recent findings across various disease areas, and future directions. The book provides in-depth coverage of epigenetics fundamentals, twin and family epigenetic study design, and the broader role of epigenetics in answering questions on the developmental origins of health and disease. Throughout the volume, twin and family studies are employed to examine causes of epigenetic variation, the relationship between epigenetic modifications and mental illness, cancers, cardiovascular disease, diabetes, obesity, high blood pressure, and more. Emerging research methods applied in twin and family studies discussed include imaging epigenetics, exposure-specific DNA methylation changes, and unravelling time trends in epigenetic effects.
Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability.
Brucella is a genus of Gram-negative, facultative, intracellular bacteria that are highly pathogenic for a variety of mammals, including humans. Recently the WHO cited brucellosis to be the world's most widespread zoonosis. An important feature of the pathogenicity of these organisms is their ability to survive and replicate within the host macrophages. However the mechanism for this is unclear. In addition, none of the classical bacterial virulence factors found in other bacterial pathogens have been found in the genomes of the forty Brucella species and biovars analysed to date. Nevertheless the application of systems biology approaches in recent years has transformed research, permitting fascinating new insights into Brucella molecular biology and genomics. Written by highly acclaimed Brucella scientists, this book comprehensively reviews the most important advances in the field. Opening chapters focus on genetic diversity within Brucella, covering both classical and new species. Pa
For decades, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics has served as the ultimate resource for clinicians integrating genetics into medical practice. With nearly 5,000 pages of detailed coverage, contributions from over 250 of the world's most trusted authorities in medical genetics, and a series of 11 volumes available for individual sale, the Seventh Edition of this classic reference includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies to complete its coverage of this growing field for medical students, residents, physicians, and researchers involved in the care of patients with genetic conditions. This comprehensive yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. In Metabolic Disorders, leading physicians and researchers thoroughly examine medical genetics as applied to a range of metabolic disorders, with emphasis on understanding the genetic mechanisms underlying these disorders, diagnostic approaches, and therapeutics that make use of current genomic technologies and translational studies. Here genetic researchers, students, and health professionals will find new and fully revised chapters on the genetic basis of body mass, amino acid, carbohydrate, iron, copper, lipo protein, and lipid metabolic disorders, as well as organic acidemias, fatty acid oxidation, and peroxisome disorders among others. With regular advances in genomic technologies propelling precision medicine into the clinic, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Seventh Edition bridges the gap between high-level molecular genetics and practical application and serves as an invaluable clinical tool for health professionals and researchers.
Histone Modifications in Therapy provides an in-depth analysis of the role of histone mechanisms in major diseases and the promise of targeting histone modifications for disease prevention and treatment. Here, researchers, clinicians and students will discover a thorough, evidence-based discussion of the biology of histones, the diseases engaged by aberrant histone modifications, and pathways with therapeutic potential. Expert chapter addresses the role of histone modifications across a variety of disorders, including cancer, neuropsychiatric, neurodegenerative, cardiac, metabolic, infectious, bacterial, autoimmune and inflammatory disorders, among others. In relation to these disease types, histone modifications are discussed, both as mechanisms of prevention and possible treatment. A concluding chapter brings together future perspectives for targeting histone modifications in therapy and next steps in research.
Responsible Genomic Data Sharing: Challenges and Approaches brings together international experts in genomics research, bioinformatics and digital security who analyze common challenges in genomic data sharing, privacy preserving technologies, and best practices for large-scale genomic data sharing. Practical case studies, including the Global Alliance for Genomics and Health, the Beacon Network, and the Matchmaker Exchange, are discussed in-depth, illuminating pathways forward for new genomic data sharing efforts across research and clinical practice, industry and academia.
Secondary Findings in Genomic Research offers a single, highly accessible resource on interpreting, managing and disclosing secondary findings in genomic research. With chapters written by experts in the field, this book is the first to concisely explain the ethical and practical issues raised by secondary genomics findings for a multi and interdisciplinary audience of genomic researchers, translational scientists, clinicians, medical students, genetic counselors, ethicists, legal experts and law students, public policy specialists and regulators. Contributors from Europe, North America, and Asia effectively synthesize perspectives from a spectrum of different scientific, societal, and global contexts, and offer pragmatic approaches to a range of topics, including oversight, governance and policy surrounding secondary genomic results, criteria for identifying results for return, communication and consent, stakeholders' attitudes and perspectives, disclosing results, and clinical, patient-centered protocols.
Microbiomics: Dimensions, Applications, and Translational Implications of Human and Environmental Microbiome Research describes a new, holistic approach to microbiomics. International experts provide in-depth discussion of current research methods for studying human, environmental, viral and fungal microbiomes, as well as the implications of new discoveries for human health, nutrition, disease, cancer research, probiotics and in the food and agricultural industries. Distinct chapters covering culturomics and sub-microbiomes, such as the viriome and mycetobiome, provide an integrative framework for the expansion of microbiomics into new areas of application, as well as crosspollination between research areas. Detailed case studies include the use of microbiomics to develop natural products with antimicrobial properties, microbiomic enhancements in food and beverage technology, microbes for bioprotection and biopreservation, microbial tools to reduce antibiotic resistance, and maintenance and cultivation of human microbial communities.
This volume provides comprehensive information on how mapping an individual's epigenome can be medically relevant and holds the potential to improve preventive medicine and precision therapeutics at an early-stage (prior to disease onset). In order to advance clinical adoption of the recently developed epigenetic approaches, it is necessary for translational scientists, clinicians, and students to gain a better understanding about epigenetic mechanisms that are associated with a particular disorder; and to be able to effectively identify biomarkers that can be applied in drug development and for better diagnosis and prognosis of diseases. Prognostic Epigenetics is the most-inclusive volume to-date specifically dedicated to epigenetic markers that have been developed for prognosis of diseases, recent advances in this field, the clinical implementation of this research, and the future outlook.
Translational Systems Medicine and Oral Disease bridges the gap between discovery science and clinical oral medicine, providing opportunities for both the scientific and clinical communities to understand how to apply recent findings in cell biology, genomic profiling, and systems medicine to favorably impact the diagnosis, treatment and management of oral diseases. Fully illustrated chapters from leading international contributors explore clinical applications of genomics, proteomics, metabolomics, microbiomics and epigenetics, as well as analytic methods and functional omics in oral medicine. Disease specific chapters detail systems approaches to periodontal disease, salivary gland diseases, oral cancer, bone disease, and autoimmune disease, among others. In addition, the book emphasizes biological synergisms across disciplines and their translational impact for clinicians, researchers and students in the fields of dentistry, dermatology, gastroenterology, otolaryngology, oncology and primary care.
Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Cardiovascular, Respiratory, and Gastrointestinal Disorders, Seventh Edition includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies. This comprehensive, yet practical, resource emphasizes theory and research fundamentals relating to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine. Updated sections in this release cover the genetics of cardiovascular, respiratory and gastrointestinal disorders, with an emphasis on genetic determinants and new pathways for diagnosis, prevention and disease management. In addition, genetic researchers, students and health professionals will find new and fully revised chapters on the molecular genetics of congenital heart defects, inherited cardiomyopathies, hypertension, cystic fibrosis, asthma, hereditary pulmonary emphysema, inflammatory bowel disease, and bile pigment metabolism disorders among other conditions.
Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine.
Transgenerational Epigenetics, Second Edition, offers the only up-to-date, comprehensive analysis of the inheritance of epigenetic phenomena between generations with an emphasis on human disease relevance, drug discovery, and next steps in clinical translation. International experts discuss mechanisms of epigenetic inheritance, its expression in animal and plant models, and how human ailments, such as metabolic disorders and cardiovascular disease are influenced by transgenerational epigenetic inheritance. Where evidence is sufficient, epigenetic clinical interventions are proposed that may help prevent or reduce the severity of disease before offspring are born. This edition has been thoroughly revised in each disease area, featuring newly researched actors in epigenetic regulation, including long noncoding RNA in addition to histone modifications and DNA methylation. Therapeutic pathways in treating cancer and extending human longevity are also considered, as are current debates and future directions for research.
Mitochondrial Medicine: A Primer for Health Care Providers and Translational Researchers is an applied, holistic resource that addresses the evolving and multidisciplinary area of mitochondrial disease. The book discusses the fundamentals of mitochondrial medicine in humans, as well as the pathophysiology, diagnosis and treatment of mitochondrial diseases. Three all-inclusive sections examine the role of mitochondria in common medical conditions, such as diabetes, heart failure and the full range of inherited mitochondrial diseases. Sections cover the genetic and biochemical basis of both mitochondrial DNA deletion syndromes and point mutation syndromes, their clinical presentation, treatment plans, genetic counseling, prenatal testing, and ongoing research. While providing a solid foundation in its topic area, each chapter in the book is written in an accessible format with illustrative case studies, thus making it a quick bedside or clinical laboratory reference.
This book provides an up-to-date review and analysis of the carrot's nuclear and organellar genome structure and evolution. In addition, it highlights applications of carrot genomic information to elucidate the carrot's natural and agricultural history, reproductive biology, and the genetic basis of traits important in agriculture and human health. The carrot genome was sequenced in 2016, and its relatively small diploid genome, combined with the fact that it is the most complete root crop genome released to date and the first-ever Euasterid II genome to be sequenced, mean the carrot has an important role in the study of plant development and evolution. In addition, the carrot is among the top ten vegetables grown worldwide, and the abundant orange provitamin A carotenoids that account for its familiar orange color make it the richest crop source of vitamin A in the US diet, and in much of the world. This book includes the latest genetic maps, genetic tools and resources, and covers advances in genetic engineering that are relevant for plant breeders and biologists alike.
For decades, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics has served as the ultimate resource for clinicians integrating genetics into medical practice. With detailed coverage in contributions from over 250 of the world's most trusted authorities in medical genetics and a series of 11 volumes available for individual sale, the Seventh Edition of this classic reference includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies to complete its coverage of this growing field for medical students, residents, physicians, and researchers involved in the care of patients with genetic conditions. This comprehensive yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. Clinical Principles and Applications thoroughly addresses general methods and approaches to genetic counseling, genetic diagnostics, treatment pathways, and drug discovery. Additionally, new and updated chapters explore the clinical implementation of genomic technologies, analytics, and therapeutics, with special attention paid to developing technologies, common challenges, patient care, and ethical and legal aspects. With regular advances in genomic technologies propelling precision medicine into the clinic, the seventh edition of Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics bridges the gap between high-level molecular genetics and practical application and serves as an invaluable clinical tool for the health professionals and researchers.
Epigenetics of Chronic Pain, Volume Nine, presents comprehensive information on the role of epigenetics in chronic pain sensitivity, providing a detailed, but accessible, view of the field from basic principles, to clinical application. Leading international researchers discuss essential mechanisms of chronic pain epigenetics, including the molecular processes of chromatin remodeling, histone modifications, and the microRNAs and noncoding RNAs involved in regulating genes tied to pain sensitivity. The influence of epigenetics in inflammatory, neuropathic, visceral and other pain models is examined, with data derived from epigenetic studies on peripheral and central mechanisms of pain sensitivity in animal models and clinical cases studies. The studies and case examples cited highlight therapeutic pathways of significance and next steps for researchers to develop epigenetic-based treatments for chronic pain. In recent years, epigenetic regulation of gene expression has been shown to play a central role in managing human pain sensitivity. Findings show that expression of many genes critical to increases or decreases in pain sensitivity are indeed regulated by DNA methylation and its enzymes, histone-involved chromatin remodeling, and noncoding RNAs, mainly microRNAs.
Population genomics has revolutionized various disciplines of biology including population, evolutionary, ecological and conservation genetics, plant and animal breeding, human health, medicine and pharmacology by allowing to address novel and long-standing questions with unprecedented power and accuracy. It employs large-scale or genome-wide genetic information and bioinformatics to address various fundamental and applied aspects in biology and related disciplines, and provides a comprehensive genome-wide perspective and new insights that were not possible before. These advances have become possible due to the development of new and low-cost sequencing and genotyping technologies and novel statistical approaches and software, bioinformatics tools, and models. Population genomics is tremendously advancing our understanding the roles of evolutionary processes, such as mutation, genetic drift, gene flow, and natural selection, in shaping up genetic variation at individual loci and across the genome and populations; improving the assessment of population genetic parameters or processes such as adaptive evolution, effective population size, gene flow, admixture, inbreeding and outbreeding depression, demography, and biogeography; resolving evolutionary histories and phylogenetic relationships of extant, ancient and extinct species; understanding the genomic basis of fitness, adaptation, speciation, complex ecological and economically important traits, and disease and insect resistance; facilitating forensics, genetic medicine and pharmacology; delineating conservation genetic units; and understanding the genetic effects of resource management practices, and assisting conservation and sustainable management of genetic resources. This Population Genomics book discusses the concepts, approaches, applications and promises of population genomics in addressing most of the above fundamental and applied crucial aspects in a variety of organisms from microorganisms to humans. The book provides insights into a range of emerging population genomics topics including population epigenomics, landscape genomics, seascape genomics, paleogenomics, ecological and evolutionary genomics, biogeography, demography, speciation, admixture, colonization and invasion, genomic selection, and plant and animal domestication. This book fills a vacuum in the field and is expected to become a primary reference in Population Genomics world-wide.
Since its introduction in 2012, cell-free (cf) DNA based Non-Invasive Prenatal Testing (NIPT) has been employed to test for fetal chromosome abnormalities, and gene mutations that lead to a variety of genetic conditions, by millions of pregnant women, in more than 90 countries worldwide. With Noninvasive Prenatal Testing (NIPT): Applied Genomics in Prenatal Screening and Diagnosis, Dr Lieve Page-Christiaens and Dr Hanns-Georg Klein have compiled the first authoritative volume on cfDNA NIPT methods and their clinical implementation.
Human Reproductive and Prenatal Genetics presents the latest material from a detailed molecular, cellular and translational perspective. Considering its timeliness and potential international impact, this all-inclusive and authoritative work is ideal for researchers, students, and clinicians worldwide. Currently, there are no comprehensive books covering the field of human reproductive and prenatal genetics. As such, this book aims to be among the largest and most useful references available. Named a Highly Commended book in the Basic and Clinical Sciences by the British Medical Association.
Integration and Visualization of Gene Selection and Gene Regulatory Networks for Cancer Genome helps readers identify and select the specific genes causing oncogenes. The book also addresses the validation of the selected genes using various classification techniques and performance metrics, making it a valuable source for cancer researchers, bioinformaticians, and researchers from diverse fields interested in applying systems biology approaches to their studies.
Birds catch the public imagination like no other group of animals; in addition, birders are perhaps the largest non-professional naturalist community. Genomics and associated bioinformatics have revolutionised daily life in just a few decades. At the same time, this development has facilitated the application of genomics technology to ecological and evolutionary studies, including biodiversity and conservation at all levels. This book reveals how the exciting toolbox of genomics offers new opportunities in all areas of avian biology. It presents contributions from prominent experts at the intersection of avian biology and genomics, and offers an ideal introduction to the world of genomics for students, biologists and bird enthusiasts alike. The book begins with a historical perspective on how genomic technology was adopted by bird ecology and evolution research groups. This led, as the book explains, to a revised understanding of avian evolution, with exciting consequences for biodiversity research as a whole. Lastly, these impacts are illustrated using seminal examples and the latest discoveries from avian biology laboratories around the world. |
![]() ![]() You may like...
Computational Structural Mechanics…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R5,170
Discovery Miles 51 700
Size-Dependent Continuum Mechanics…
Esmaeal Ghavanloo, S. Ahmad Fazelzadeh, …
Hardcover
R4,430
Discovery Miles 44 300
Critical Theories of Crisis in Europe…
Poul F. Kjaer, Niklas Olsen
Paperback
R1,264
Discovery Miles 12 640
|