![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > DNA
This volume details a collection of state-of-art methods including identification of novel ncRNAs and their targets, functional annotation and disease association in different biological contexts. Chapters guide readers through an overview of disease-specific ncRNAs, computational methods and workflows for ncRNA discovery, annotation based on high-throughput sequencing data, bioinformatics tools and databases for ncRNA analyses, network-based methods, and kinetic modelling of ncRNA-mediated gene regulation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Biology of Non-Coding RNA: Methods and Protocols aims to provide a state-of-the-art collection of computational methods and approaches that will be of value to researchers interested in ncRNA field.
Gene duplication has long been believed to have played a major role in the rise of biological novelty through evolution of new function and gene expression patterns. The first book to examine gene duplication across all levels of biological organization, "Evolution after Gene Duplication" presents a comprehensive picture of the mechanistic process by which gene duplication may have played a role in generating biodiversity. Key Features: Explores comparative genomics, genome evolution studies and analysis of multi-gene families such as "Hox," globins, olfactory receptors and MHC (immune system)A complete post-genome treatment of the topic originally covered by Ohno's 1970 classic, this volume extends coverage to include the fate of associated regulatory pathwaysTaps the significant increase in multi-gene family data that has resulted from comparative genomicsComprehensive coverage that includes opposing theoretical viewpoints, comparative genomics data, theoretical and empirical evidence and the role of bioinformatics in the study of gene duplication This up-to-date overview of theory and mathematical models along with practical examples is suitable for scientists across various levels of biology as well as instructors and graduate students.
The contents of this book focus on the recent investigations in molecular bi- ogywhereapplicationsoftopologyseemtobeverystimulating. Thevolumeis based on the talks and lectures given by participants of the three-month p- gram"TopologyinCondensedMatter,"whichwasheldintheMaxPlanck- stitut fur Physik komplexer Systeme, Dresden, Germany, 8May-31July 2002, under the scienti?c direction of Professors M. Kl eman, S. Novikov and - self. The aim of this program was to discuss recent applications of topology to several areas in condensed matter physics and molecular biology. The ?rst volume "Topology in Condensed Matter" is concerned with m- ern applications of geometrical and topological techniques to such new and classic ?elds of physics like electron theory of metals, theory of nano-crystals, aperiodic and liquid crystals, quantum computation and so on. This volume is published simultaneously in "Springer Series in Solid-State Physics." The present volume gives an exposition of the role of topology in the theory of proteins and DNA. The last thirty years a?rmed very e?cient - plications of modern mathematics, especially topology, in physics. The union of mathematics and physics was very stimulating for both sides. On the other hand, the impact of mathematics in biology has been rather limited. H- ever here also some interesting results were obtained. In particular, there are applications of knot theory in the theory of circular closed DNA. The - cent discoveries in molecular biology indicate future successful applications of topology."
Human Reproductive and Prenatal Genetics, Second Edition provides application-driven coverage of key topics in human reproductive and prenatal genetics, including genetic control underlying the development of the reproductive tracts and gametogenesis, the genetics of fertilization and implantation, the genetic basis of female and male infertility, as well as genetic and epigenetic aspects of assisted reproduction. Also examined are the genetics and epigenetics of the placenta in normal and abnormal pregnancy, preimplantation genetic diagnosis and screening, and cutting-edge advances in noninvasive prenatal screening, prenatal genetic counseling, and bioethical and medicolegal aspects of relevance in the lab and clinic. This new edition has been fully revised to address new and evolving technologies in human reproductive genetics, with new chapters added on chromatin landscapes and sex determination, genetic alterations of placental development and preeclampsia, metabolism and inflammation in PCOS, pre-implantational genetic testing, maternal genetic disorders, bioethics, and future applications.
Clinical Genome Sequencing: Psychological Aspects thoroughly details key psychological factors to consider while implementing genome sequencing in clinical practice, taking into account the subtleties of genetic risk assessment, patient consent and best practices for sharing genomic findings. Chapter contributions from leading international researchers and practitioners cover topics ranging from the current state of genomic testing, to patient consent, patient responses to sequencing data, common uncertainties, direct-to-consumer genomics, the role of genome sequencing in precision medicine, genetic counseling and genome sequencing, genome sequencing in pediatrics, genome sequencing in prenatal testing, and ethical issues in genome sequencing. Applied clinical case studies support concept illustration, making this an invaluable, practical reference for this important and multifaceted topic area within genomic medicine.
This meticulous book explores the leading methodologies, techniques, and tools for microarray data analysis, given the difficulty of harnessing the enormous amount of data. The book includes examples and code in R, requiring only an introductory computer science understanding, and the structure and the presentation of the chapters make it suitable for use in bioinformatics courses. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of key detail and expert implementation advice that ensures successful results and reproducibility. Authoritative and practical, Microarray Data Analysis is an ideal guide for students or researchers who need to learn the main research topics and practitioners who continue to work with microarray datasets.
This volume presents a series of protocols and methods, some of which are not widely used by researchers/practitioners, and will aid in the execution of different laboratory techniques. Forensic DNA Typing Protocols, Second Edition is arranged into a series of related chapters. Chapter 1-3 examines two different aspects of RNA analysis for body fluid identification. Chapters 4-7 focuses on the storage of biological materials and the extraction of DNA from hard tissues. Chapters 8-10 present methods for monitoring the quality of DNA extracts, and steps to aid in the purification of DNA. Chapters 11-16 talk about methods on non-standard markers, such as INDELs, Y chromosome STRs, and mitochondrial DNA. Detailed procedures and data analysis for phenotypes and ancestry are explored in Chapter 17-19. The last chapter (20) looks at the application of DNA typing to the identification of non-human material to species level. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and thorough, Forensic DNA Typing Protocols, Second Edition, is a valuable resource for forensic specialists, researchers, and anyone interested in the field of forensic science.
Recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists.
This thorough introductory volume presents the background, applications, and stepwise directions for standard DNA and RNA isolation techniques. Unlike a kit chemistry approach, this book provides a breadth of information necessary for junior or non-expert researchers to learn and apply these techniques in their work. An accessible, indispensable how-to guide for researchers in immunology, molecular biology, zoology, forensic science, genetics, botany, neuroscience, physiology, and others.
Translational Bioinformatics and Systems Biology Methods for Personalized Medicine introduces integrative approaches in translational bioinformatics and systems biology to support the practice of personalized, precision, predictive, preventive, and participatory medicine. Through the description of important cutting-edge technologies in bioinformatics and systems biology, readers may gain an essential understanding of state-of-the-art methodologies. The book discusses topics such as the challenges and tasks in translational bioinformatics; pharmacogenomics, systems biology, and personalized medicine; and the applicability of translational bioinformatics for biomarker discovery, epigenomics, and molecular dynamics. It also discusses data integration and mining, immunoinformatics, and neuroinformatics. With broad coverage of both basic scientific and clinical applications, this book is suitable for a wide range of readers who may not be scientists but who are also interested in the practice of personalized medicine.
Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Hematologic, Renal, and Immunologic Disorders, Seventh Edition thoroughly examines medical genetics and genomics as applied to hematologic, immunologic and endocrinologic disorders, with an emphasis on understanding the genetic mechanisms underlying these conditions, diagnostic approaches, and treatment methods. Here, genetic researchers, students and health professionals will find new and fully revised chapters on the genetics of red blood cell diseases, rhesus and other fetomaternal incompatibilities, immunodeficiency disorders, inherited complement deficiencies, celiac disease, and diabetes mellitus, as well as thyroid, parathyroid and gonad disorders, among other conditions. With regular advances in genomic technologies propelling precision medicine into the clinic, this book, which has served as the ultimate resource for clinicians integrating genetics into medical practice, continues to provide the most important information. With nearly 5,000 pages of detailed coverage, contributions from over 250 of the world's most trusted authorities in medical genetics, and a series of 11 volumes available for individual sale, this updated edition includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies.
This volume provides established approaches for identifying, characterizing, and manipulating circRNAs in vitro, in vivo, and in silico. Chapters highlight the breakthroughs and the challenges in this new field of research. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Circular RNAs: Methods and Protocols aims to useful and informative for further study into this vital field.
Bringing together the latest methodological and scientific progress in the various research areas in the field of Environmental Genomics, this book discusses the characterization of the structure and dynamics of life, the study of the evolution and adaptation of genes and genomes, the analysis of degraded and/or old DNA, and the functional and genomic ecology of populations and communities. It also considers access to the production and sharing of NGS data and the quality of this data. As the product of the collective discussion of the active French scientific community, the book presents not only the latest technologies in the development of new sequencing methods, but also the resulting issues, challenges and prospects, in order to identify those aspects with the greatest potential for modeling and exploring the function of ecosystems.
Advanced Mechanical Models of DNA Elasticity includes coverage on 17 different DNA models and the role of elasticity in biological functions with extensive references. The novel advanced helicoidal model described reflects the direct connection between the molecule helix structure and its specific properties, including nonlinear features and transitions. It provides an introduction to the state of the field of DNA mechanics, known and widely used models with their short analysis, as well as coverage on experimental methods and data, the influence of electrical, magnetic, ionic conditions on the persistence length, and dynamics with viscosity influence. It then addresses the need to understand the nature of the non-linear overstretching transition of DNA under force and why DNA has a negative twist-stretch coupling.
Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. The series features several reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology, and ecology. Volume 78 focuses on the Genomes and Evolution of Charophytes, Bryophytes, Lycophytes, and Ferns. Sequencing of genomes of 'lower' animals such as sponges or hydrozoans has much informed our understanding of how metazoans evolved. On the plant side of things, sequencing and comparison of a moss and lycophyte genome with those of green algae and flowering plants has greatly informed our understanding of plant evolution. However, it has also become clear that we need to look into genomes of the closest algal relatives to land plants, the charophytes, and into further genomes of bryophytes, lycophytes, and ferns to unravel how land plants evolved.
Metabolic Phenotyping in Personalized and Public Healthcare provides information on the widespread recognition that a personalized or stratified approach to patient treatment may offer a more efficient and effective healthcare solution than phenotype-led approaches. In order to achieve that objective, a deep personal description is required at the level of the genome, proteome, metabolome, or preferably a combination of these aided by technology. This book, edited and written by the outstanding luminaries of this evolving field, evaluates metabolic profiling and its uses across personalized and population healthcare, while also covering the advent of new technology fields, such as surgical metabonomics. In addition, the text presents specific examples of where this technology has been used clinically and with efficacy, pointing towards a framework and protocol for usage as it hits the clinical mainstream.
This volume covers the latest protocols designed to identify and characterize TEs in genomes, ancient or recently inserted. Additionally, this book includes a series of protocols designed to understand how host genomes act to regulate the activity of TEs, from elegant genetic mobilization assays to key biochemical methods. Finally, this book also includes chapters that describe how TEs can be used for biotechnological applications. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Transposons and Retrotransposons: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Psychiatric Genomics presents and synthesizes available knowledge in the field of psychiatric genomics, offering methodologies to advance new research and aid clinical translation. After providing an introduction to genomics and psychiatry, international experts discuss the genomic basis of schizophrenia, bipolar disorder, depression, personality disorders, anxiety disorders, addictions, eating disorders, and sleep disorders, among other disorders. In addition, recommendations for next steps in clinical implementation and drug discovery are discussed in-depth, with chapters dedicated to pharmacogenomics and antipsychotics, antidepressants and mood stabilizers, adverse drug reactions, implementation of pharmacogenomics in psychiatric clinics, and ethical issues. Finally, methods sections provide a solid grounding in research approaches and computational analytics, from using animal models in psychiatric genomics and accessing biobanks, to employing computational analysis, genome-wide association studies (GWAS), brain pathophysiology, and endophenotypes in psychiatric research.
Are you considering to test your own DNA? Do you want to learn more about your health and ancestry? Understand your DNA - A Guide is about what you can use genetics for. For a few hundred dollars, you can now scan your own genes. Millions of people all over the world have already done so. Everyone wants to see what they can get to know about themselves, and the market growing rapidly. But what does it require from you? And what can you really use a DNA test for? Understand your DNA - A Guide helps you put the plots and charts of consumer genetics into perspective and enables you to figure out what's up and down in the media headlines. The book is also a key input for today's debate about what we as a society can and want to do with medical genetics. Genetics will play a growing role in the future. Understand your DNA - A Guide is an easy-to-read and necessary guide to that future. The book is provided with a foreword by Professor Sham Pak-Chung of Hong Kong University.While there are many books about genetics, they typically take the perspective of a scientist wanting to understand the molecular levels. At the same time, direct-to-consumer genetics is a booming market, with millions of people already tested. Very little has been published that will guide them for real, because the need here is more focused on medical and practical understanding, than focussed on molecules.This book therefore aims to hit that vacant spot in the market. It's a walk-through of all concepts that are necessary to understand in your own analysis. Meanwhile, it is also limited in scope to only those concepts - thus distinguishing it from broader works.The book is appropriate for the readerships in modern multi-ethnic metropolises because it mixes European and Asian examples, both from the collaboration between the author from Europe and the foreword-writer, Prof. Pak Sham of Hong Kong University. But also, because many of the examples in the book concerns differences and similarities between Asian and European ethnicities, something the author believes is a trend in time.Related Link(s)
Applied plant genomics and biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, investigating epigenetic modifications and epigenetic memory through analysis of DNA methylation states, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics, and plants modified to produce high-value pharmaceutical proteins. The book provides an overview of research advances in application of RNA silencing and RNA interference, through Virus-based transient gene expression systems, Virus induced gene complementation (VIGC), Virus induced gene silencing (Sir VIGS, Mr VIGS) Virus-based microRNA silencing (VbMS) and Virus-based RNA mobility assays (VRMA); RNA based vaccines and expression of virus proteins or RNA, and virus-like particles in plants, the potential of virus vaccines and therapeutics, and exploring plants as factories for useful products and pharmaceuticals are topics wholly deepened. The book reviews and discuss Plant Functional Genomic studies discussing the technologies supporting the genetic improvement of plants and the production of plant varieties more resistant to biotic and abiotic stresses. Several important crops are analysed providing a glimpse on the most up-to-date methods and topics of investigation. The book presents a review on current state of GMO, the cisgenesis-derived plants and novel plant products devoid of transgene elements, discuss their regulation and the production of desired traits such as resistance to viruses and disease also in fruit trees and wood trees with long vegetative periods. Several chapters cover aspects of plant physiology related to plant improvement: cytokinin metabolism and hormone signaling pathways are discussed in barley; PARP-domain proteins involved in Stress-Induced Morphogenetic Response, regulation of NAD signaling and ROS dependent synthesis of anthocyanins. Apple allergen isoforms and the various content in different varieties are discussed and approaches to reduce their presence. Euphorbiaceae, castor bean, cassava and Jathropa are discussed at genomic structure, their diseases and viruses, and methods of transformation. Rice genomics and agricultural traits are discussed, and biotechnology for engineering and improve rice varieties. Mango topics are presented with an overview of molecular methods for variety differentiation, and aspects of fruit improvement by traditional and biotechnology methods. Oilseed rape is presented, discussing the genetic diversity, quality traits, genetic maps, genomic selection and comparative genomics for improvement of varieties. Tomato studies are presented, with an overview on the knowledge of the regulatory networks involved in flowering, methods applied to study the tomato genome-wide DNA methylation, its regulation by small RNAs, microRNA-dependent control of transcription factors expression, the development and ripening processes in tomato, genomic studies and fruit modelling to establish fleshy fruit traits of interest; the gene reprogramming during fruit ripening, and the ethylene dependent and independent DNA methylation changes.
In recent years, knowledge of epigenetic mechanisms underlying disease onset and progression has proven crucial for the development of novel early diagnosis and prognosis biomarkers for patient stratification and precision medicine. Epigenetics in Precision Medicine, a new volume in the Translational Epigenetics series, provides a thorough discussion and overview of current developments in clinical epigenetics with special emphasis on epigenetic biomarkers that can be used for clinical diagnosis, prognosis, patient stratification, and treatment monitoring. Disease types discussed include cancer, metabolic disorders, neurodegenerative diseases, bone disease, and immune-related disorders. The book examines the challenges of advancing epigenetics research and translating findings to the clinic and drug discovery in each of these areas, as well as current solutions; chapter authors discuss how to leverage epigenomic technologies, applications, and tools, such as next-generation sequencing, to discover new epigenetic biomarkers in disease and drug studies. Epigenetics in Precision Medicine focuses on complex epigenetic mechanisms in several pathologies, and explores how epigenetics can power the advance of precision medicine, not only by improving in vitro diagnostic and prognostic tools, but by providing new therapeutic approaches to treat human disease.
Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Perinatal and Reproductive Genetics, Seventh Edition includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies in this growing field. The book is ideal for medical students, residents, physicians and researchers involved in the care of patients with genetic conditions. This comprehensive, yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. Chapters from leading international researchers and clinicians focus on topics ranging from single gene testing to whole genome sequencing, whole exome sequencing, gene therapy, genome editing approaches, FDA regulations on genomic testing and therapeutics, and ethical aspects of employing genomic technologies.
Epigenetics and Metabolomics, a new volume in the Translational Epigenetics series, offers a synthesized discussion of epigenetic control of metabolic activity, and systems-based approaches for better understanding these mechanisms. Over a dozen chapter authors provide an overview of epigenetics in translational medicine and metabolomics techniques, followed by analyses of epigenetic and metabolomic linkage mechanisms likely to result in effective identification of disease biomarkers, as well as new therapies targeting the removal of the inappropriate epigenetic alterations. Epigenetic interventions in cancer, brain damage, and neuroendocrine disease, among other disorders, are discussed in-depth, with an emphasis on exploring next steps for clinical translation and personalized healthcare.
In 1962, Maurice Wilkins, Francis Crick, and James Watson received the Nobel Prize, but it was Rosalind Franklin's data and photographs of DNA that led to their discovery. Brenda Maddox tells a powerful story of a remarkably single-minded, forthright, and tempestuous young woman who, at the age of fifteen, decided she was going to be a scientist, but who was airbrushed out of the greatest scientific discovery of the twentieth century.
Genomics of Rare Diseases: Understanding Disease Genetics Using Genomic Approaches, a new volume in the Translational and Applied Genomics series, offers readers a broad understanding of current knowledge on rare diseases through a genomics lens. This clear understanding of the latest molecular and genomic technologies used to elucidate the molecular causes of more than 5,000 genetic disorders brings readers closer to unraveling many more that remain undefined and undiscovered. The challenges associated with performing rare disease research are also discussed, as well as the opportunities that the study of these disorders provides for improving our understanding of disease architecture and pathophysiology. Leading chapter authors in the field discuss approaches such as karyotyping and genomic sequencing for the better diagnosis and treatment of conditions including recessive diseases, dominant and X-linked disorders, de novo mutations, sporadic disorders and mosaicism. |
![]() ![]() You may like...
Epigenetics and DNA Damage, Volume 33
Miriam Galvonas Jasiulionis
Paperback
R3,647
Discovery Miles 36 470
Sex, Gender, and Epigenetics - From…
Marianne J. Legato, Dov Feldberg, …
Paperback
R3,671
Discovery Miles 36 710
Visualizing RNA Dynamics in the Cell…
Grigory S. Filonov, Samie Jaffrey
Hardcover
Twin Research for Everyone - From…
Adam D. Tarnoki, David L. Tarnoki, …
Paperback
R3,831
Discovery Miles 38 310
Pathogenic Neisseria - Genomics…
John K. Davies, Charlene M. Kahler
Hardcover
R6,977
Discovery Miles 69 770
Protein Interaction Networks, Volume 131
Rossen Donev
Hardcover
|