![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > DNA
A gripping investigation that opens fresh perspectives on biology and anthropology 'At the cutting edge of contemporary thought' GUARDIAN 'A thoroughly enjoyable read' SUNDAY TELEGRAPH While living among Peruvian Indians, anthropologist Jeremy Narby became intrigued by their claim that their phenomenal knowledge of plants and biochemistry was communicated to them directly while under the influence of hallucinogens. Despite his initial scepticism, Narby found himself engaged in an increasingly obsessive personal quest. The evidence he collected - on subjects as diverse as molecular biology, shamanism, neurology and ancient mythology - led inexorably to the conclusion that the Indians' claims were literally true: to a consciousness prepared with drugs, specific biochemical knowledge could indeed be directly transmitted through DNA itself. A gripping investigation that opens fresh perspectives on biology, anthropology and the limits of rationalism, The Cosmic Serpent is new science of the most exhilarating kind.
"Genome Transcriptome and Proteome Analysis" is a concise introduction to the subject, successfully bringing together these three key areas of research. Starting with a revision of molecular genetics the book offers clear explanations of the tools and techniques widely used in genome, transcriptome and proteome analysis. Subsequent chapters offer a broad overview of linkage maps, physical maps and genome sequencing, with a final discussion on the identification of genes responsible for disease. An invaluable introduction to the basic concepts of the subject, this text offers the student an excellent overview of current research methods and applications and is a good starting point for those new to the area.A clear, concise introduction to the subject of modern genomic analysisA technology-oriented approach including the latest developments in the fieldInvaluable to those students taking courses in Bioinformatics, Human Genetics, Biochemistry and Molecular Biology
'A book that would have had Darwin swooning - anyone seriously interested in who we are and how we function should read this.' Guardian At the beginning of this century enormous progress had been made in genetics. The Human Genome Project finished sequencing human DNA. It seemed it was only a matter of time until we had all the answers to the secrets of life on this planet. The cutting-edge of biology, however, is telling us that we still don't even know all of the questions. How is it that, despite each cell in your body carrying exactly the same DNA, you don't have teeth growing out of your eyeballs or toenails on your liver? How is it that identical twins share exactly the same DNA and yet can exhibit dramatic differences in the way that they live and grow? It turns out that cells read the genetic code in DNA more like a script to be interpreted than a mould that replicates the same result each time. This is epigenetics and it's the fastest-moving field in biology today. The Epigenetics Revolution traces the thrilling path this discipline has taken over the last twenty years. Biologist Nessa Carey deftly explains such diverse phenomena as how queen bees and ants control their colonies, why tortoiseshell cats are always female, why some plants need a period of cold before they can flower, why we age, develop disease and become addicted to drugs, and much more. Most excitingly, Carey reveals the amazing possibilities for humankind that epigenetics offers for us all - and in the surprisingly near future.
This book details the statistical concepts used in gene mapping, first in the experimental context of crosses of inbred lines and then in outbred populations, primarily humans. It presents elementary principles of probability and statistics, which are implemented by computational tools based on the R programming language to simulate genetic experiments and evaluate statistical analyses. Each chapter contains exercises, both theoretical and computational, some routine and others that are more challenging. The R programming language is developed in the text.
The field of eukaryotic DNA repair is enjoying a period of remarkable growth and discovery, fueled by technological advances in molecular bi- ogy, protein biochemistry, and genetics. Notable achievements include the molecular cloning of multiple genes associated with classical human repair disorders, such as xeroderma pigmentosum, Cockayne syndrome, and ataxia telangiectasia; elucidation of the core reaction of nucleotide excision repair (NER); the discovery that certain NER proteins participate not only in repair, but also in transcription; recognition of the crucial role played by mismatch repair processes in maintenance of genome stability and avoidance of cancer; the findings that the tumor suppressor protein p53 is mutated in many types of cancer, and has a key role in directing potentially malignant, genotoxin-d- aged cells towards an apoptotic fate; and the discovery and elaboration of DNA damage (and replication) checkpoints, which placed repair phenomen- ogy firmly within a cell-cycle context. Of course, much remains to be learned about DNA repair. To that end, DNA Repair Protocols: Eukaryotic Systems is about the tools and techniques that have helped propel the DNA repair field into the mainstream of biological research. DNA Repair Protocols: Eukaryotic Systems provides detailed, step-- step instructions for studying manifold aspects of the eukaryotic response to genomic injury. The majority of chapters describe methods for analyzing DNA repair processes in mammalian cells. However, many of those techniques can be applied with only minor modification to other systems, and vice versa.
Genome Plasticity in Health and Disease provides a fully up-to-date overview on genome plasticity and its role in human physiology and disease. Following an introduction to the field, a diverse range of chapters cover genomic and epigenomic analysis and the use of model organisms and genomic databases in studies. Specific molecular and biochemical mechanisms of genome plasticity are examined, including somatic variants, De Novo variants, founder variations, isolated populations dynamics, copy-number variations, mobile elements, DNA methylation, histone modifications, transcription factors, non-coding RNAs, telomere dynamics and RNA editing. Later chapters explore disease relevance for cancer, as well as cardiovascular, neuropsychiatric, inflammatory, and endocrine disease, and associated pathways for drug discovery.
In recent years, the field of epigenetics has grown significantly, driving new understanding of human developmental processes and disease expression, as well as advances in diagnostics and therapeutics. As the field of epigenetics continues to grow, methods and technologies have multiplied, resulting in a wide range of approaches and tools researchers might employ. Epigenetics Methods offers comprehensive instruction in methods, protocols, and experimental approaches applied in field of epigenetics. Here, across thirty-five chapters, specialists offer step-by-step overviews of methods used to study various epigenetic mechanisms, as employed in basic and translational research. Leading the reader from fundamental to more advanced methods, the book begins with thorough instruction in DNA methylation techniques and gene or locus-specific methylation analyses, followed by histone modification methods, chromatin evaluation, enzyme analyses of histone methylation, and studies of non-coding RNAs as epigenetic modulators. Recently developed techniques and technologies discussed include single-cell epigenomics, epigenetic editing, computational epigenetics, systems biology epigenetic methods, and forensic epigenetic approaches. Epigenetics methods currently in-development, and their implication for future research, are also considered in-depth. In addition, as with the wider life sciences, reproducibility across experiments, labs, and subdisciplines is a growing issue for epigenetics researchers. This volume provides consensus-driven methods instruction and overviews. Tollefsbol and contributing authors survey the range of existing methods; identify best practices, common themes, and challenges; and bring unity of approach to a diverse and ever-evolving field.
Large-scale, interoperable biobanks are an increasingly important asset in today's life science research and, as a result, multiple types of biobanks are being established around the globe with very different financial, organizational and legal set-ups. With interdisciplinary chapters written by lawyers, sociologists, doctors and biobank practitioners, Global Genes, Local Concerns identifies and discusses the most pressing issues in contemporary biobanking. This timely book addresses pressing questions such as: how do national biobanks best contribute to translational research?; What are the opportunities and challenges that current regulations present for translational use of biobanks?; How does inter-biobank coordination and collaboration occur on various levels?; and how could academic and industrial exploitation, ownership and IPR issues be addressed and facilitated? Identifying that biobanks foundational and operational set-ups should be legally and ethically sound, while at the same time reflecting the hopes and concerns of all the involved stakeholders, this book contributes to the continued development of international biobanking by highlighting and analysing the complexities in this important area of research. Academics in the fields of law and ethics, health law and biomedical law, as well as biobank managers and policymakers will find this insightful book a stimulating and engaging read. Contributors include: T. Bossow, T.A. Caulfield, B.J. Clark, A. Hellstadius, J.R. Herrmann, K. Hoyer, M. Jordan, J. Kaye, N.C.H. Kongsholm, K. Liddell, J. Liddicoat, M.J. Madison, T. Minssen, B. Murdoch, W. Nicholson Price II, E. Ortega-Paino, M. Prictor, M.B. Rasmussen, K. Sargsyan, J. Schovsbo, A.M. Tupasela, E. van Zimmeren, F. Vogl, H. Yu, P.K. Yu
Winner of the 2014 Diamond Anniversary Book Award Finalist for the 2014 National Communications Association Critical and Cultural Studies Division Book of the Year Award In 2000, the National Human Genome Research Institute announced the completion of a "draft" of the human genome, the sequence information of nearly all 3 billion base pairs of DNA. Since then, interest in the hereditary basis of disease has increased considerably. In The Material Gene, Kelly E. Happe considers the broad implications of this development by treating "heredity" as both a scientific and political concept. Beginning with the argument that eugenics was an ideological project that recast the problems of industrialization as pathologies of gender, race, and class, the book traces the legacy of this ideology in contemporary practices of genomics. Delving into the discrete and often obscure epistemologies and discursive practices of genomic scientists, Happe maps the ways in which the hereditarian body, one that is also normatively gendered and racialized, is the new site whereby economic injustice, environmental pollution, racism, and sexism are implicitly reinterpreted as pathologies of genes and by extension, the bodies they inhabit. Comparing genomic approaches to medicine and public health with discourses of epidemiology, social movements, and humanistic theories of the body and society, The Material Gene reworks our common assumption of what might count as effective, just, and socially transformative notions of health and disease.
Genetics and Genomics of Eye Disease: Advancing to Precision Medicine thoroughly examines the latest genomics methods for studying eye disease, including complex eye disorders associated with multiple genes. GWAS, WES, WGS, RNA-sequencing, and transcriptome analysis as employed in ocular genomics are discussed in-depth, as are genomics findings tied to early-onset glaucoma, strabismus, age-related macular degeneration, adult-onset glaucoma, diabetic retinopathy, keratoconus, and leber congenital amaurosis, among other diseases. Research and clinical specialists offer guidance on conducting preventative screenings and counseling patients, as well as the promise of machine learning, computational statistics and artificial intelligence in advancing ocular genomics research.
This book presents the current state of the art in peanut genomics, focusing particularly on the latest genomic findings, tools and strategies employed in genome sequencing, transcriptomes and analysis, availability of public and private genomic resources, and ways to maximize the use of this information in peanut breeding programs. Further, it demonstrates how advances in plant genomics can be used to improve crop breeding. The peanut or groundnut (Arachis hypogaea L. Millsp) is a globally important grain legume and oilseed crop, cultivated in over 100 countries and consumed in the form of roasted seeds, oil and confectionary in nearly every country on Earth. The peanut contributes towards achieving food and nutritional security, in addition to financial security through income generation; as such, it is also vital to the livelihood of the poor in the developing world. There have been significant advances in peanut research, especially in the last five years, including sequencing the genome of both diploid progenitors, and the availability of tremendous transcriptome resources, large-scale genomic variations that can be used as genetic markers, genetic populations (bi- and multiparent populations and germplasm sets), marker-trait associations and molecular breeding products. The immediate availability of the genome sequence for tetraploid cultivated peanuts is the most essential genomic resource for achieving a deeper understanding of peanut traits and their use in breeding programs.
Cellular and Animal Models in Human Genomics Research provides an indispensable resource for applying comparative genomics in the annotation of disease-gene associated variants that are identified by human genomic sequencing. The book presents a thorough overview of effective protocols for the use of cellular and animal modeling methods to turn lists of plausible genes into causative biomarkers. With chapters written by international experts, the book first addresses the fundamental aspects of using cellular and animal models in genetic and genomic studies, including in-depth examples of specific models and their utility, i.e., yeast, worms, flies, fish, mice and large animals. Protocols for properly conducting model studies, genomic technology, modeling candidate genes vs. genetic variants, integrative modeling, utilizing induced pluripotent stem cells, and employing CRISPR-Cas9 are also discussed in-depth.
Epigenetics and Regeneration compiles the first foundational reference on epigenetic mechanisms governing tissue development, repair, homeostasis, and regeneration, as well as pathways to employ these mechanisms in clinical practice and translational science. In this book, life science researchers, clinicians, and students will discover an interdisciplinary resource bringing together common themes in the field, background overviews, research methods, recent advances, and opportunities for drug discovery. Throughout this volume, special attention is paid to pre-clinical and first clinical studies aimed at increasing the regenerative potential of damaged tissues by epigenetic drugs, as well as innovative, discipline spanning strategies to enhance cell reprogramming. As an all-inclusive, evidence-based volume, Epigenetics and Regeneration will stimulate discussion and boost new research in this fascinating and impactful area of translational epigenetics.
Chromatin Signaling and Neurological Disorders, Volume Seven, explores our current understanding of how chromatin signaling regulates access to genetic information, and how their aberrant regulation can contribute to neurological disorders. Researchers, students and clinicians will not only gain a strong grounding on the relationship between chromatin signaling and neurological disorders, but they'll also discover approaches to better interpret and employ new diagnostic studies and epigenetic-based therapies. A diverse range of chapters from international experts speaks to the basis of chromatin and epigenetic signaling pathways and specific chromatin signaling factors that regulate a range of diseases. In addition to the basic science of chromatin signaling factors, each disease-specific chapter speaks to the translational or clinical significance of recent findings, along with important implications for the development of epigenetics-based therapeutics. Common themes of translational significance are also identified across disease types, as well as the future potential of chromatin signaling research.
Pharmacoepigenetics provides a comprehensive volume on the role of epigenetics and epigenomics in drug discovery and development, providing a detailed, but accessible, view of the field, from basic principles, to applications in disease therapeutics. Leading international researchers from across academia, clinical settings and the pharmaceutical industry discuss the influence of epigenetics and epigenomics in human pathology, epigenetic biomarkers for disease prediction, diagnosis, and treatment, current epigenetic drugs, and the application of epigenetic procedures in drug development. Throughout the book, chapter authors offer a balanced and objective discussion of the future of pharmacoepigenetics and its crucial contribution to the growth of precision and personalized medicine.
For decades, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics has served as the ultimate resource for clinicians integrating genetics into medical practice. With detailed coverage in contributions from over 250 of the world's most trusted authorities in medical genetics and a series of 11 volumes available for individual sale, the Seventh Edition of this classic reference includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies to complete its coverage of this growing field for medical students, residents, physicians, and researchers involved in the care of patients with genetic conditions. This comprehensive yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. This volume, Foundations, summarizes basic theories, concepts, research areas, and the history of medical genetics, providing a contextual framework for integrating genetics into medical practice. In this new edition, clinically oriented information is supported by full-color images and expanded sections on the foundations of genetic analytics, next generation sequencing, and therapeutics. With regular advances in genomic technologies propelling precision medicine into the clinic, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Seventh Edition bridges the gap between high-level molecular genetics and practical application and serves as an invaluable clinical tool for the health professionals and researchers.
Applied Microbiology and Bioengineering: An Interdisciplinary Approach discusses recent advances in microbiology and cutting-edge biotechnology that have generated interest among researchers. The book is divided into several sections, including Enzymes in Bioprocessing, Human Health, Microbial Physiology and Biomedical Applications, and Bioprocess Development. Included are some of the latest developments in the field, like smart actuators for innovative biomedical applications, microalgal antenna engineering for improved bioprocess of biofuel, cell line engineering, and synbiotic foods. It is a useful reference for those in the applied microbiology and biotechnology fields, but will also be useful for practitioners in biotech.
This book discusses advances in our understanding of the structure and function of the maize genome since publication of the original B73 reference genome in 2009, and the progress in translating this knowledge into basic biology and trait improvement. Maize is an extremely important crop, providing a large proportion of the world's human caloric intake and animal feed, and serving as a model species for basic and applied research. The exceptionally high level of genetic diversity within maize presents opportunities and challenges in all aspects of maize genetics, from sequencing and genotyping to linking genotypes to phenotypes. Topics covered in this timely book range from (i) genome sequencing and genotyping techniques, (ii) genome features such as centromeres and epigenetic regulation, (iii) tools and resources available for trait genomics, to (iv) applications of allele mining and genomics-assisted breeding. This book is a valuable resource for researchers and students interested in maize genetics and genomics.
Are you considering to test your own DNA? Do you want to learn more about your health and ancestry? Understand your DNA - A Guide is about what you can use genetics for. For a few hundred dollars, you can now scan your own genes. Millions of people all over the world have already done so. Everyone wants to see what they can get to know about themselves, and the market growing rapidly. But what does it require from you? And what can you really use a DNA test for? Understand your DNA - A Guide helps you put the plots and charts of consumer genetics into perspective and enables you to figure out what's up and down in the media headlines. The book is also a key input for today's debate about what we as a society can and want to do with medical genetics. Genetics will play a growing role in the future. Understand your DNA - A Guide is an easy-to-read and necessary guide to that future. The book is provided with a foreword by Professor Sham Pak-Chung of Hong Kong University.While there are many books about genetics, they typically take the perspective of a scientist wanting to understand the molecular levels. At the same time, direct-to-consumer genetics is a booming market, with millions of people already tested. Very little has been published that will guide them for real, because the need here is more focused on medical and practical understanding, than focussed on molecules.This book therefore aims to hit that vacant spot in the market. It's a walk-through of all concepts that are necessary to understand in your own analysis. Meanwhile, it is also limited in scope to only those concepts - thus distinguishing it from broader works.The book is appropriate for the readerships in modern multi-ethnic metropolises because it mixes European and Asian examples, both from the collaboration between the author from Europe and the foreword-writer, Prof. Pak Sham of Hong Kong University. But also, because many of the examples in the book concerns differences and similarities between Asian and European ethnicities, something the author believes is a trend in time.Related Link(s)
In the past four years, many genetic loci have been implicated for BMI from the outcomes of genome-wide association studies (GWAS), primarily in adults. Insulin-induced gene 2 (INSIG2) was the first locus to be reported by this method to have a role in obesity but replication attempts have yielded inconsistent outcomes. The identification of the second locus, the fat mass- and obesity-associated gene (FTO), h has been more robustly observed by others. Studies from both FTO knock out and FTO overexpression mouse model support the fact that FTO is directly involved in the regulation of energy intake and metabolism in mice, where the lack of FTO expression leads to leanness while enhanced expression of FTO leads to obesity. Along with numerous other studies, a number of genetic variants have been established robustly in the context of obesity, giving us fresh insights into the pathogenesis of the disease. This book will give a comprehensive overview of efforts aimed at uncovering genetic variants associated with obesity, which have been particularly successful in the past 5 years with the advent of genome-wide association studies (GWAS). This book will cover this state of the art technology and its application to obesity in great detail. Topics covered will include genetics of childhood obesity, genetics of syndromic obesity, copy number variants and extreme obesity, co-morbidities of obesity genetics, and functional follow-up of genetic variants. "
Epigenetics in Human Disease, Second Edition examines the diseases and conditions on which we have advanced knowledge of epigenetic mechanisms, such as cancer, autoimmune disorders, aging, metabolic disorders, neurobiological disorders and cardiovascular disease. In addition to detailing the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, novel epigenetic approaches to treatment are also explored. Fully revised and up-to-date, this new edition discusses topics of current interest in epigenetic research, including stem cell epigenetic therapy, bioinformatic analysis of NGS data, and epigenetic mechanisms of imprinting disorders. Further sections explore online epigenetic tools and datasets, early-life programming of epigenetics in age-related diseases, the epigenetics of addiction and suicide, and epigenetic approaches to regulating and preventing diabetes, cardiac disease, allergic disorders, Alzheimer's disease, respiratory diseases, and many other human maladies.
Computational Non-coding RNA Biology is a resource for the computation of non-coding RNAs. The book covers computational methods for the identification and quantification of non-coding RNAs, including miRNAs, tasiRNAs, phasiRNAs, lariat originated circRNAs and back-spliced circRNAs, the identification of miRNA/siRNA targets, and the identification of mutations and editing sites in miRNAs. The book introduces basic ideas of computational methods, along with their detailed computational steps, a critical component in the development of high throughput sequencing technologies for identifying different classes of non-coding RNAs and predicting the possible functions of these molecules. Finding, quantifying, and visualizing non-coding RNAs from high throughput sequencing datasets at high volume is complex. Therefore, it is usually possible for biologists to complete all of the necessary steps for analysis.
miRNA and Cancer, Volume 135, the latest volume in the Advances in Cancer Research series, provides invaluable information on the exciting and fast-moving field of cancer research. This volume presents original reviews on research bridging oncology and gene expression, and includes specific chapters on Non-coding RNAs as Biomarkers of Cancer, The Enigma of microRNA Regulation in Cancer, Animal Models to Study microRNA functions, Non-coding RNAs and Cancer, microRNAs in Cancer Susceptibility, ts-RNAs versus microRNAs, microRNAs and AML, and microRNAs and Epigenetics.
In Loeffler's Footsteps - Viral Genomics in the Era of High-Throughput Sequencing, Volume 99, the latest in the Advances in Virus Research series, contains new information on the topic, with chapters covering Loeffler 4.0 - diagnostic metagenomics, Detection of a novel orthobunyavirus by metagenomic analysis - the situation after five years, New Squirrel and Rodent Viruses Detected by NGS, Astroviridae - A Growing Family, New Leaves in the Growing Pestivirus Tree, New BTV Serotypes and no End?, and The recently discovered Bokeloh Bat Lyssavirus - Evidence for its continued transmission in Europe. First published in 1953, this series covers a diverse range of in-depth reviews, providing a valuable overview of the current field of virology. The series is a valuable resource for information on all topics of virus research, from bacteriophages to human viruses, with this volume focusing on genomics.
With the new techniques described in this volume, a new gene can be placed on the linkage map within only a few days. Leading researchers have updated the earlier edition to include the latest versions of DNA-based marker maps for a variety of important crops. |
You may like...
|