![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering
This book presents best selected papers presented at the International Conference on Advances in Energy Technology (ICAET 2020) organized by Gandhi Institute for Education and Technology (GIET), Bhubaneswar, India, during 17-18 January 2020. The proceeding targets the current research works that may lead to sustainable development of new products and techniques. Carefully reviewed works from the submission are selected to include in the book. It is broadly having four divisions based on the tracks - energy systems, energy technology, green technology, and renewal energy. Emphasis is mainly given on inclusion of original research works within the scope.
This book includes the original, peer reviewed research articles from the 2nd International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA 2020), held in August, 2020 at Goa, India. It covers the latest research trends or developments in areas of data science, artificial intelligence, neural networks, cognitive science and machine learning applications, cyber physical systems and cybernetics.
Create affordable solid fuel blends that will burn efficiently while reducing the carbon footprint. Solid Fuel Blending Handbook: Principles, Practices, and Problems describes a new generation of solid fuel blending processes. The book includes discussions on such topics as flame structure and combustion performance, boiler efficiency, capacity as influenced by flue gas volume and temperature, slagging and fouling, corrosion, and emissions. Attention is given to the major types of combustion systems including stokers, pulverized coal, cyclone, and fluidized bed boilers. Specific topics considered include chlorine in one or more coals, alkali metals (e.g., K, Na) and alkali earth elements, and related topics. Coals of consideration include Appalachian, Interior Province,
and Western bituminous coals; Powder River Basin (PRB) and other
subbituminous coals; Fort Union and Gulf Coast lignites, and many
of the off-shore coals (e.g., Adaro coal, an Indonesian
subbituminous coal with very low sulfur; other off-shore coals from
Germany, Poland, Australia, South Africa, Columbia, and more).
Interactions between fuels and the potential for blends to be
different from the parent coals will be a critical focus of this of
the book. One stop source to solid fuel types and blending processes Evaluate combustion systems and calculate their efficiency Recognize the interactions between fuels and their potential energy out put Be aware of the Environmental Aspects of Fuel Blending "
This book exemplifies how smart buildings have a crucial role to play for the future of energy. The book investigates what already exists in regards to technologies, approaches and solutions both with a scientific and technological point of view. The authors cover solutions for mirroring and tracing human activities, optimal strategies to configure home settings, and generating explanations and persuasive dashboards to get occupants better committed in their home energy managements. Solutions are adapted from the fields of Internet of Things, physical modeling, optimization, machine learning and applied artificial intelligence. Practical applications are given throughout.
This book presents select proceedings of the National Conference on Renewable Energy and Sustainable Environment (NCRESE 2020) and examines a range of reliable energy-efficient harvesting technologies, their applications and utilization of available alternate energy resources. The topics covered include alternate energy technologies, smart grid topologies and their relevant issues, solar thermal and bio-energy systems, electric vehicles and energy storage systems and its control issues. The book also discusses various properties and performance attributes of advance renewable energy techniques and impact on environmental sustainability. The book will be useful for researchers and professionals working in the areas of energy and sustainable environment and the allied fields.
This book presents the state of the art of Internet of Things (IoT) from the perspective of healthcare and Ambient Assisted Living (AAL). It discusses the emerging technologies in healthcare services used for healthcare professionals and patients for enhanced living environments and public health. The topics covered in this book include emerging eHealth IoT applications, Internet of Medical Things, health sensors, and wearable sensors for pervasive and personalized healthcare, and smart homes applications for enhanced health and well-being. The book also presents various ideas for the design and development of IoT solutions for healthcare and AAL. It will be useful for bioengineers and professionals working in the areas of healthcare as well as health informatics.
This book appearance is a logical development of the research activity in a relatively new field named Plasma Assisted Combustion (PAC) and is the first attempt to collect the most valuable contributions to the field from different research groups all over the globe. The first practical applications of different plasma sources for ignition and combustion enhancement date back to the 1960s and 1970s. The first PAC conference was organized by the Editor in 1989 in the former Soviet Union. At this time, the PAC community is relatively well organized with an annual International Workshop and Exhibition on Plasma Assisted Combustion (IWEPAC), now converted into the International Conference on Plasma Assisted Technologies or ICPAT starting in 2012, and special issues in the IEEE Transactions on Plasma Science on the topic of on Plasma Assisted Combustion. This two-volume work is one of the first projects of the newly established International Plasma Technology Center (IPTC) intended to provide, in Volume 1, a description of different plasma sources especially designed for PAC and, in Volume 2, to describe PAC processes that are under development or used industrially. If successful, we plan to publish new editions every two-three years depending on progress in this field. The basic mission of the IPTC is to promote scientific, educational, and charitable activities. This book is an example of organizing an international team of authors to promote education in the focus areas of the disciplines addressed. There are over 30 authors for Volume 1, who hail from five countries: Czech Republic, Netherlands, Russia, Ukraine, and the United States. A second volume will be produced in the future. The IPTC will gratefully welcome new authors in this endeavor to aid our mission of keeping abreast of new developments in the field of plasma assisted combustion, gasification, and pollution control and to update the literature to include new information through additional or revised volu
This book presents mathematical models of demand-side management programs, together with operational and control problems for power and renewable energy systems. It reflects the need for optimal operation and control of today's electricity grid at both the supply and demand spectrum of the grid. This need is further compounded by the advent of smart grids, which has led to increased customer/consumer participation in power and renewable energy system operations. The book begins by giving an overview of power and renewable energy systems, demand-side management programs and algebraic modeling languages. The overview includes detailed consideration of appliance scheduling algorithms, price elasticity matrices and demand response incentives. Furthermore, the book presents various power system operational and control mathematical formulations, incorporating demand-side management programs. The mathematical formulations developed are modeled and solved using the Advanced Interactive Multidimensional Modeling System (AIMMS) software, which offers a powerful yet simple algebraic modeling language for solving optimization problems. The book is extremely useful for all power system operators and planners who are concerned with optimal operational procedures for managing today's complex grids, a context in which customers are active participants and can curb/control their demand. The book details how AIMMS can be a useful tool in optimizing power grids and also offers a valuable research aid for students and academics alike.
Electrostatic Accelerators have been at the forefront of modern technology since the development by Sir John Cockroft and Ernest Walton in 1932 of the first accelerator, which was the first to achieve nuclear transmutation and earned them the Nobel Prize in Physics in 1951. The applications of Cockroft and Walton's development have been far reaching, even into our kitchens where it is employed to generate the high voltage needed for the magnetron in microwave ovens. Other electrostatic accelerator related Nobel prize winning developments that have had a major socio-economic impact are; the electron microscope where the beams of electrons are produced by an electrostatic accelerator, X-rays and computer tomography (CT) scanners where the X-rays are produced using an electron accelerator and microelectronic technology where ion implantation is used to dope the semiconductor chips which form the basis of our computers, mobile phones and entertainment systems. Although the Electrostatic Accelerator field is over 90 years old, and only a handful of accelerators are used for their original purpose in nuclear physics, the field and the number of accelerators is growing more rapidly than ever. The objective of this book is to collect together the basic science and technology that underlies the Electrostatic Accelerator field so it can serve as a handbook, reference guide and textbook for accelerator engineers as well as students and researchers who work with Electrostatic Accelerators.
Microgrids use ICT to intelligently deliver energy and integrate clean generation. They can operate independently from a larger grid and can help to strengthen grid resilience. Applications include remote as well as urban areas, hospitals, and manufacturing complexes. Cybersecurity challenges arise, exposing the microgrids to cyber-attacks, possibly resulting in harm to infrastructure and to people. Research has classified attacks based on confidentiality, integrity, and availability, and most countermeasures focus on specific attacks or on protecting specific components. A global approach is needed combining solutions that can secure the entire system and respond in milliseconds. This reference work for researchers, in academia, industry and at grid operators as well as for students, provides an up-to-date framework for cybersecurity technologies and perspectives on operation, control, testbed and protection of microgrids from a system level perspective. Coverage includes the role of modern power electronics in active distribution networks, cyber-induced steady-state and dynamic issues, situational awareness of cyber-attacks, AI aided detection of data manipulation, cyber security threats in multi-agent microgrids, communication assisted protection, design and modeling of cyber-attacks for grid tied PV systems, stealth cyber-attacks, resilient distributed control, cyber-physical testbeds for smart grids and EV charging, and event-driven resiliency of microgrids against cyber-attacks. The book offers advanced cyber-attack detection strategies for microgrids to address breaches, counter attacks, deploy appropriate countermeasures, and stabilize microgrids under cyber-attacks.
This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: * a wide variety of numerical methods concepts and related energy systems applications;* systems equations and optimization, partial differential equations, and finite difference method;* methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;* numerical investigations of electrochemical fields and devices; and* issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.
This book brings together real-world accounts of using voltage stability assessment (VSA) and transient stability assessment (TSA) tools for grid management. Chapters are written by leading experts in the field who have used these tools to manage their grids and can provide readers with a unique and international perspective. Case studies and success stories are presented by those who have used these tools in the field, making this book a useful reference for different utilities worldwide that are looking into implementing these tools, as well as students and practicing engineers who are interested in learning the real-time applications of VSA and TSA for grid operation.
The creation of a flexible, efficient, digitized, dependable and
resilient power grid may well be the best route to increasing
energy efficiency & security, as well as boosting the potential
of renewable & distributed power sources. This book covers
smart grids from A-Z, providing a complete treatment of the topic,
covering both policy and technology, explaining the most recent
innovations supporting its development, and clarifying how the
smart grid can support the integration of renewable energy
resources. Among the most important topics included are smart
metering, renewable energy storage, plug-in hybrids, flexible
demand response, strategies for offsetting intermittency issues,
micro-grids for off-grid communities, and specific in-depth
coverage of wind and solar power integration. The content draws
lessons from an international panel of contributors, whose diverse
experiences implementing smart grids will help to provide templates
for success.
As the need for proficient power resources continues to grow, it is becoming increasingly important to implement new strategies and technologies in energy distribution to meet consumption needs. The employment of smart grid networks assists in the efficient allocation of energy resources. Smart Grid as a Solution for Renewable and Efficient Energy features emergent research and trends in energy consumption and management, as well as communication techniques utilized to monitor power transmission and usage. Emphasizing developments and challenges occurring in the field, this book is a critical resource for researchers and students concerned with signal processing, power demand management, energy storage procedures, and control techniques within smart grid networks.
This book includes the most recent outcomes from research and professional practice in the ventilative cooling field, gathered by the selected panel of authors. It provides essential contents to face and reduce the rise of space cooling and ventilation energy uses in buildings by alternative ventilation and cooling solutions. The book is organised into three parts which include a detailed description of ventilative cooling boundaries and implications (working principles, KPIs, standards, comfort models, control techniques) and of principal techniques (night ventilation, controlled natural ventilation, hybrid solutions, PCM and mass activation, evaporative cooling, earth-to-air heat exchangers) along with an updated analysis of the background to the topic. Furthermore, the last part of the book defines a unique practical and theoretical framework to include ventilative cooling solutions in different building typologies along with their principal implications.
This book reports on the 13th International Workshop on Railway Noise (IWRN13), held on September 16-20, 2019, in Ghent, Belgium. It gathers original peer-reviewed papers describing the latest developments in railway noise and vibration, as well as state-of-the-art reviews written by authoritative experts in the field. The different papers cover a broad range of railway noise and vibration topics, such as rolling noise, wheel squeal, noise perception, prediction methods, measurements and monitoring, and vehicle interior noise. Further topics include rail roughness, rail corrugation and grinding, high-speed rail and aerodynamic noise, structure-borne noise, ground-borne noise and vibration, and resilient track forms. Policy, criteria and regulation are also discussed. Offering extensive and timely information to both scientists and engineers, this book will help them in their daily efforts to identify, understand and solve problems related to railway noise and vibration, and to achieve the ultimate goal of reducing the environmental impact of railway systems.
This volume gathers the latest advances, innovations, and applications in the field of structural health monitoring (SHM) and more broadly in the fields of smart materials and intelligent systems. The volume covers highly diverse topics, including signal processing, smart sensors, autonomous systems, remote sensing and support, UAV platforms for SHM, Internet of Things, Industry 4.0, and SHM for civil structures and infrastructures. The contributions, which are published after a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists. The contents of this volume reflect the outcomes of the activities of EWSHM (European Workshop on Structural Health Monitoring) in 2020.
The internal heat of the planet Earth represents an inexhaustible reservoir of thermal energy known as Geothermal Energy. The 2nd edition of the book covers the geologic and technical aspects of developing all forms of currently available systems using this "renewable" green energy. The book presents the distribution and transport of thermal energy in the Earth. Geothermal Energy is a base load energy available at all times independent of climate and weather. The text treats the efficiency of diverse shallow near surface installations and deep geothermal systems including hydrothermal and petrothermal techniques and power plants in volcanic high-enthalpy fields. The book also discusses environmental aspects of utilizing different forms of geothermal energy, including induced seismicity, noise pollution and gas release to the atmosphere. Chapters on hydraulic well tests, chemistry of deep hot water, scale formation and corrosion, development of geothermal probes, well drilling techniques and geophysical exploration complete the text. This book, for the first time, covers the full range of utilization of Geothermal Energy.
|
![]() ![]() You may like...
Is Your Thinking Keeping You Poor? - 50…
Douglas Kruger
Paperback
![]()
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
|