![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Medical imaging > General
Based on the authors groundbreaking research, Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology presents a research ideology, a novel multi-paradigm methodology, and advanced computational models for the automated EEG-based diagnosis of neurological disorders. It is based on the ingenious integration of three different computing technologies and problem-solving paradigms: neural networks, wavelets, and chaos theory. The book also includes three introductory chapters that familiarize readers with these three distinct paradigms. After extensive research and the discovery of relevant mathematical markers, the authors present a methodology for epilepsy diagnosis and seizure detection that offers an exceptional accuracy rate of 96 percent. They examine technology that has the potential to impact and transform neurology practice in a significant way. They also include some preliminary results towards EEG-based diagnosis of Alzheimer s disease. The methodology presented in the book is especially versatile and can be adapted and applied for the diagnosis of other brain disorders. The senior author is currently extending the new technology to diagnosis of ADHD and autism. A second contribution made by the book is its presentation and advancement of Spiking Neural Networks as the seminal foundation of a more realistic and plausible third generation neural network.
This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.
This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.
The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018. The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections: Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods. Part II: Optical and Histology Applications: Optical Imaging Applications; Histology Applications; Microscopy Applications; Optical Coherence Tomography and Other Optical Imaging Applications. Cardiac, Chest and Abdominal Applications: Cardiac Imaging Applications: Colorectal, Kidney and Liver Imaging Applications; Lung Imaging Applications; Breast Imaging Applications; Other Abdominal Applications. Part III: Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging; Diffusion Weighted Imaging; Functional MRI; Human Connectome. Neuroimaging and Brain Segmentation Methods: Neuroimaging; Brain Segmentation Methods. Part IV: Computer Assisted Intervention: Image Guided Interventions and Surgery; Surgical Planning, Simulation and Work Flow Analysis; Visualization and Augmented Reality. Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications; Multi-Organ Segmentation; Abdominal Segmentation Methods; Cardiac Segmentation Methods; Chest, Lung and Spine Segmentation; Other Segmentation Applications.
This issue of PET Clinics focuses on PET-CT-MRI based Cardiovascular Imaging, and is edited by Drs. Abass Alavi (the Consulting Editor of PET Clinics), Poul Flemming Hoilund-Carlsen, and Ali Salavati. Articles will include: Evolving role of PET in detecting and characterizing atherosclerosis; Applications of modern CT techniques in assessing cardiovascular disorders; Applications of conventional MRI techniques in assessing cardiovascular disorders; PET/CT Assessment of ischemic heart disease; PET/CT evaluation of cardiac sarcoidosis; PET/MRI in cardiovascular imaging; Evolving role of PET in detecting and characterizing cardiovascular disorders; PET/CT evaluation of infectious diseases of the heart; State of PET-based gating in cardiac imaging; Potential role of PET in assessing cardiac arrhythmias; PET-based cardiovascular imaging tracers; and more!
The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018. The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections: Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods. Part II: Optical and Histology Applications: Optical Imaging Applications; Histology Applications; Microscopy Applications; Optical Coherence Tomography and Other Optical Imaging Applications. Cardiac, Chest and Abdominal Applications: Cardiac Imaging Applications: Colorectal, Kidney and Liver Imaging Applications; Lung Imaging Applications; Breast Imaging Applications; Other Abdominal Applications. Part III: Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging; Diffusion Weighted Imaging; Functional MRI; Human Connectome. Neuroimaging and Brain Segmentation Methods: Neuroimaging; Brain Segmentation Methods. Part IV: Computer Assisted Intervention: Image Guided Interventions and Surgery; Surgical Planning, Simulation and Work Flow Analysis; Visualization and Augmented Reality. Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications; Multi-Organ Segmentation; Abdominal Segmentation Methods; Cardiac Segmentation Methods; Chest, Lung and Spine Segmentation; Other Segmentation Applications.
This book constitutes the refereed proceedings of the 4th International Workshop on Patch-Based Techniques in Medical Images, Patch-MI 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 15 full papers presented were carefully reviewed and selected from 17 submissions. The papers are organized in the following topical sections: Image Denoising Image Registration and Matching, Image Classification and Detection, Brain Image Analysis, and Retinal Image Analysis.
The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018. The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections: Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods. Part II: Optical and Histology Applications: Optical Imaging Applications; Histology Applications; Microscopy Applications; Optical Coherence Tomography and Other Optical Imaging Applications. Cardiac, Chest and Abdominal Applications: Cardiac Imaging Applications: Colorectal, Kidney and Liver Imaging Applications; Lung Imaging Applications; Breast Imaging Applications; Other Abdominal Applications. Part III: Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging; Diffusion Weighted Imaging; Functional MRI; Human Connectome. Neuroimaging and Brain Segmentation Methods: Neuroimaging; Brain Segmentation Methods. Part IV: Computer Assisted Intervention: Image Guided Interventions and Surgery; Surgical Planning, Simulation and Work Flow Analysis; Visualization and Augmented Reality. Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications; Multi-Organ Segmentation; Abdominal Segmentation Methods; Cardiac Segmentation Methods; Chest, Lung and Spine Segmentation; Other Segmentation Applications.
The textbook begins with exercises related to radioactive sources and decay schemes. The problems covered include series decay and how to determine the frequency and energy of emitted particles in disintegrations. The next chapter deals with the interaction of ionizing radiation, including the treatment of photons and charged particles. The main focus is on applications based on the knowledge of interaction, to be used in subsequent work and courses. The textbook then examines detectors and measurements, including both counting statistics and properties of pulse detectors. The chapter that follows is dedicated to dosimetry, which is a major subject in medical radiation physics. It covers theoretical applications, such as different equilibrium situations and cavity theories, as well as experimental dosimetry, including ionization chambers and solid state and liquid dosimeters. A shorter chapter deals with radiobiology, where different cell survival models are considered. The last chapter concerns radiation protection and health physics. Both radioecology and radiation shielding calculations are covered. The textbook includes tables to simplify the solutions of the exercises, but the reader is mainly referred to important websites for importing necessary data.
This book constitutes the refereed joint proceedings of the Second International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2018 and the First International Workshop on Integrating Medical Imaging and Non-Imaging Modalities, Beyond MIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 6 full papers presented at GRAIL 2018 and the 5 full papers presented at BeYond MIC 2018 were carefully reviewed and selected. The GRAIL papers cover a wide range of develop graph-based models for the analysis of biomedical images and encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts. The Beyond MIC papers cover topics of novel methods with significant imaging and non-imaging components, addressing practical applications and new datasets
This book constitutes the refereed proceedings of the 22st Annual Conference on Medical Image Understanding and Analysis, MIUA 2018, held in Southampton, UK, in July 2018.The 34 revised full papers presented were carefully reviewed and selected from 49 submissions. The papers are organized in topical sections on liver analysis, medical image analysis, texture and image analysis, MRI: applications and techniques, segmentation in medical images, CT: learning and planning, ocular imaging analysis, applications of medical image analysis.
Designed to accompany the 5th Edition of the companion text, Workbook for Diagnostic Medical Sonography: A Guide to Clinical Practice, Abdomen and Superficial Structures, 5th Edition, by Diane M. Kawamura and Tanya D. Nolan, offers a full complement of self-study aids for active learning that enable you to assess and build your knowledge as you advance through the text. Most importantly, it helps you get the most out of your study time, with a variety of custom-designed exercises to help you master each objective. Features a new, full-color format throughout Contains glossary terms reviews, illustrated anatomy and physiology reviews with image labeling, and chapter reviews with multiple-choice, fill-in-the-blank, and short answer questions Features up-to-date sonograms and relevant content throughout, including new coverage of ergonomics Enrich Your eBook Reading Experience Read directly on your preferred device(s), such as computer, tablet, or smartphone. Easily convert to audiobook, powering your content with natural language text-to-speech.
Volumetric, or three-dimensional, digital imaging now plays a vital role in many areas of research such as medicine and geology. Medical images acquired by tomographic scanners for instance are often given as a stack of cross-sectional image slices. Such images are called ‘volumetric’ because they depict objects in their entire three-dimensional extent rather than just as a projection onto a two-dimensional image plane. Since huge amounts of volumetric data are continually being produced in many places around the world, techniques for their automatic analysis become ever more important. Written by a computer vision specialist, this clear, detailed account of volumetric image analysis techniques provides a practical approach to the field including the following topics:
This book, the second of two volumes dedicated to ethics in social networking and business, presents the future and changing paradigms related to ethics, and morality in our interconnected society. This volume analyzes advanced topics, including new technologies, transhumanism and uberization, to provide a more complex, shared and collective environment into why business ethics is essential for managing risks and uncertainties. The Ethics in Social Networking and Business series is the result of a cross-integration of real experiences (from IBM, society and the Rotary Club), transdisciplinary works in decision making, and advances at the boundaries of several scientific fields.
Magnetoencephalography (MEG) and electroencephalography (EEG) provide complementary views to the neurodynamics of healthy and diseased human brains. Both methods are totally noninvasive and can track with millisecond temporal resolution spontaneous brain activity, evoked responses to various sensory stimuli, as well as signals associated with the performance of motor, cognitive and affective tasks. MEG records the magnetic fields, and EEG the potentials associated with the same neuronal currents, which however are differentially weighted due to the physical and physiological differences between the methods. MEG is rather selective to activity in the walls of cortical folds, whereas EEG senses currents from the cortex (and brain) more widely, making it harder to pinpoint the locations of the source currents in the brain. Another important difference between the methods is that skull and scalp dampen and smear EEG signals, but do not affect MEG. Hence, to fully understand brain function, information from MEG and EEG should be combined. Additionally, the excellent neurodynamical information these two methods provide can be merged with data from other brain-imaging methods, especially functional magnetic resonance imaging where spatial resolution is a major strength. MEG-EEG Primer is the first-ever volume to introduce and discuss MEG and EEG in a balanced manner side-by-side, starting from their physical and physiological bases and then advancing to methods of data acquisition, analysis, visualization, and interpretation. The authors pay special attention to careful experimentation, guiding readers to differentiate brain signals from various artifacts and to assure that the collected data are reliable. The book weighs the strengths and weaknesses of MEG and EEG relative to one another and to other methods used in systems, cognitive, and social neuroscience. The authors also discuss the role of MEG and EEG in the assessment of brain function in various clinical disorders. The book aims to bring members of multidisciplinary research teams onto equal footing so that they can contribute to different aspects of MEG and EEG research and to be able to participate in future developments in the field.
Spontaneous resting-state fluctuations in neuronal activity offer insights into the inherent organization of the human brain, and may provide markers for diagnosis and treatment of mental disorders. Resting state functional magnetic resonance imaging (fMRI) can be used to investigate intrinsic functional connectivity networks, which are identified based on similarities in the signal measured from different brain regions. From data acquisition to interpretation of results, Introduction to Resting State fMRI Functional Connectivity discusses a wide range of approaches without requiring any previous knowledge of resting state fMRI, making it highly accessible to readers from a broad range of backgrounds. Supplemented with online datasets and examples to enable the reader to obtain hands-on experience working with real data, this primer provides a practical and approachable introduction for those new to the field of resting state fMRI. The Oxford Neuroimaging Primers are short texts aimed at new researchers or advanced undergraduates from the biological, medical or physical sciences. They are intended to provide a thorough understanding of the ways in which neuroimaging data can be analyzed and how that relates to acquisition and interpretation. Each primer has been written so that it is a stand-alone introduction to a particular area of neuroimaging, and the primers also work together to provide a comprehensive foundation for this increasingly influential field.
This book offers the first comprehensive overview of artificial intelligence (AI) technologies in decision support systems for diagnosis based on medical images, presenting cutting-edge insights from thirteen leading research groups around the world. Medical imaging offers essential information on patients' medical condition, and clues to causes of their symptoms and diseases. Modern imaging modalities, however, also produce a large number of images that physicians have to accurately interpret. This can lead to an "information overload" for physicians, and can complicate their decision-making. As such, intelligent decision support systems have become a vital element in medical-image-based diagnosis and treatment. Presenting extensive information on this growing field of AI, the book offers a valuable reference guide for professors, students, researchers and professionals who want to learn about the most recent developments and advances in the field.
This text provides a comprehensive review of ERCP and EUS and the clinical conditions for which they are employed. Presented in a case-based format with accompanying videos, it will serve as a valuable practical clinical resource for gastroenterologists with an interest in ERCP and EUS. The text highlights major techniques involved in ERCP, reviews complications and recent data on preventing post-ERCP pancreatitis, and discusses important issues in training in ERCP including use of endoscopic simulators and assessment of competency as emphasized in the new ACGME guidelines. For biliary diseases, new techniques for managing biliary stones, novel technologies for diagnosing indeterminate biliary strictures, and new devices for treating benign and malignant strictures are also highlighted. For pancreatic diseases, advances in minimally invasive endoscopic techniques for pancreatic stones and strictures, and management of the complications of pancreatitis are reviewed. Furthermore, ERCP is not limited by age, pregnancy or history of abdominal surgeries and special considerations particular to these patient populations are also discussed. The EUS chapters review the breadth of equipment available for performing EUS and EUS-FNA, detail the technique of performing EUS-FNA, and explore pertinent issues with training and assessing competency analogous to ERCP training. Valuable insights on the basics of cytopathology relevant to the endosonographer are summarized. The classic indication for EUS of staging luminal cancers is examined in detail while pancreaticobiliary indications are discussed highlighting newer adjunctive technologies including elastography and contrast-enhanced EUS. Although in its infancy, the brave new world of therapeutic EUS is explored with a focus on endoscopic necrosectomy, EUS-guided biliary and pancreatic access as well as the exciting possibilities of EUS-guided radiofrequency ablation and injection of anti-tumor agents. ERCP and EUS: A Case Based Approach will serve as a very useful resource for physicians who perform or refer patients for ERCP and EUS. It provides a concise yet comprehensive summary of the current status of ERCP and EUS that will help guide patient management and stimulate clinical research.
Atlas of Hybrid Imaging of the Heart, Lymph Nodes and Musculoskeletal System, Volume Three: Sectional Anatomy for PET/CT, PET/MRI and SPECT/CT provides a guide for interpreting PET and SPECT in relation to co-registered CT and/or MRI. In this atlas, exclusively dedicated to heart, lymph nodes and musculoskeletal system, nuclear physicians and radiologists cover hybrid nuclear medicine based on their own case studies. The practical structure in two-page unit offers readers a navigational tool based on anatomical districts, with labeled and explained low-dose multiplanar CT or MRI views merged with PET fusion imaging on one side and enhanced CT or MRI on the other. This new format enables the rapid identification of hybrid nuclear medicine findings which are now routine at leading medical centers. Each chapter begins with three-dimensional CT and/or MRI views of the evaluated anatomical region, bringing forward sectional tables. Clinical cases, tricks and pitfalls linked to several PET or SPECT radiopharmaceuticals help introduce the reader to peculiar molecular pathways and improve confidence in cross-sectional imaging that is vital for accurate diagnosis and treatments.
Functional Electromyography: Provocative Maneuvers in Electrodiagnosis integrates electrophysiology further into the physical examination than ever before. It introduces the use of electrodiagnostic studies to quantify the neurological changes brought about by three provocative maneuvers commonly used in contemporary medicine. This widens the scope of electromyography while sharpening physicians' diagnostic acuity. The book presents nerve conduction velocity (NCV) and H-reflex techniques to identify common conditions that are difficult to diagnose by any other means, often using the needle exam (EMG), MRI or musculoskeletal ultrasound to verify their clinical utility. Functional electromyography successfully diagnoses some cases of thoracic outlet syndrome, nearly all cases of piriformis syndrome, and offers a method for determining whether spinal stenosis or radiculopathy is the main pain generator when both are present in a single patient, even at the same level. This is particularly valuable because the standard conservative and surgical treatments for these two conditions are opposite, in spite of the identical symptom-set they produce. The book carefully describes each technique and persuasively documents their validity in statistical series and individual case presentations. It further guides the attentive electromyographer to adapt these methods to cases beyond those presented in its pages, suggesting a safe and scientific approach to other functional maneuvers of value to the electromyographer, and methods for validating one-time measures that may aid the electromyographer in clinical situations that are neither common nor easily analyzed. Hand drawn illustrations are included alongside text developed by experts in the field. An invaluable resource for physiatrists, neurologists, orthopedic surgeons, specialists in pain management and other providers, Functional Electromyography: Provocative Maneuvers in Electrodiagnosis represents a major contribution to the field of electrodiagnosis.
Short compute times are crucial for timely diagnostics in biomedical applications, but lead to a high demand in computing for new and improved imaging techniques. In this book reconfigurable computing with FPGAs is discussed as an alternative to multi-core processing and graphics card accelerators. Instead of adjusting the application to the hardware, FPGAs allow the hardware to also be adjusted to the problem. Acceleration of Biomedical Image Processing with Dataflow on FPGAs covers the transformation of image processing algorithms towards a system of deep pipelines that can be executed with very high parallelism. The transformation process is discussed from initial design decisions to working implementations. Two example applications from stochastic localization microscopy and electron tomography illustrate the approach further. Topics discussed in the book include:* Reconfigurable hardware* Dataflow computing* Image processing* Application acceleration
Atlas of Brain and Spine Oncology Imaging presents a comprehensive visual review of pathologic disease variations of cancers of the brain and spine through extensive radiologic images. The focus of the book is on algorithmic strategies for identifying neoplastic pathologies commonly found in brain and spinal tumors through a visual representation of the variety of appearances that each neoplasm takes, within both benign and malignant manifestations. With contributions from radiologists on staff at a National Cancer Institute-designated comprehensive cancer center, who draw from an extensive collection of diagnostic images across all imaging modalities, this book will be valuable to practicing radiologists, radiation oncologists, surgeons and other practitioners involved in the diagnosis and treatment of brain and spinal neoplasms in all patient populations.
The Atlas of Genitourinary Oncological Imaging presents a comprehensive visual review of appearances for normal anatomy and oncological diseases in the genitourinary system using over 900 radiological images and illustrations. The book presents current imaging techniques and discusses the role of imaging in pre-treatment staging and post-treatment follow-up. Diseases discussed include kidney, adrenal gland, upper tract, bladder, prostate, testes, and pediatric malignancies. Individual chapters include normal anatomy, imaging techniques, and pathology of each cancer type. The staging of the malignancy and what to include in the radiology report are discussed, and expected and complicated postoperative and post-treatment findings and recurrence are presented. Dedicated chapters on interventional and radiation therapy discuss their unique role in the management and treatment of oncology of the genitourinary system. Additionally, a chapter on chemotherapy toxicities discusses drug reaction treatment therapies unique to the genitourinary system. Edited and written by radiologists from the genitourinary disease management team at Memorial Sloan-Kettering Cancer Center, the Atlas of Genitourinary Oncological Imaging is an ideal resource for radiology and urology trainees seeking a review of the basics and for practicing radiologists looking for answers to challenging cases confronted in daily practice. |
You may like...
A Patient's Guide to Medical Imaging
Ronald Eisenberg, JD, MD, FACR, Alexander Margulis, MD
Hardcover
R1,210
Discovery Miles 12 100
Imaging Neuroinflammation, Volume 9
Cornelia Laule, John Port
Paperback
R3,351
Discovery Miles 33 510
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,019
Discovery Miles 30 190
Targeted Cancer Imaging - Design and…
Mehdi Azizi, Hadi Kokabi, …
Paperback
R2,614
Discovery Miles 26 140
|