![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Medical imaging > General
The 2005 bicentenary of Hans Christian Andersen's birth is an opportunity to re-evaluate the achievement of one of the great figures of the fairy tale and storytelling tradition, a beloved writer famous for The Snow Queen and The Little Mermaid, The Ugly Duckling and The Red Shoes and many other now classic tales. Jack Zipes broadens our understanding of Andersen by exploring the relation of the Danish writer's work to the development of literature and of the fairy tale in particular. Based on thirty-five years of researching and writing on Andersen, this new book is a welcome reconsideration of Andersen's place and of his reception in English-speaking countries and on film.
This open access book describes marked advances in imaging technology that have enabled the visualization of phenomena in ways formerly believed to be completelyimpossible. These technologies have made major contributions to the elucidation of the pathology of diseases as well as to their diagnosis and therapy. The volume presents various studies from molecular imaging to clinical imaging. It also focuses on innovative, creative, advanced research that gives full play to imaging technology inthe broad sense, while exploring cross-disciplinary areas in which individual research fields interact and pursuing the development of new techniques where they fuse together. The book is separated into three parts, the first of which addresses the topic of visualizing and controlling molecules for life. Th e second part is devoted to imaging of disease mechanisms, while the final part comprises studies on the application of imaging technologies to diagnosis and therapy. Th e book contains the proceedings of the 12th Uehara International Symposium 2017, "Make Life Visible" sponsored by the Uehara Memorial Foundation and held from June 12 to 14, 2017. It is written by leading scientists in the field and is an open access publication under a CC BY 4.0 license.
Magnetic resonance imaging (MRI) is a technique used in biomedical imaging and radiology to visualize internal structures of the body. Because MRI provides excellent contrast between different soft tissues, the technique is especially useful for diagnostic imaging of the brain, muscles, and heart. In the past 20 years, MRI technology has improved significantly with the introduction of systems up to 7 Tesla (7 T) and with the development of numerous post-processing algorithms such as diffusion tensor imaging (DTI), functional MRI (fMRI), and spectroscopic imaging. From these developments, the diagnostic potentialities of MRI have improved impressively with an exceptional spatial resolution and the possibility of analyzing the morphology and function of several kinds of pathology. Given these exciting developments, the Magnetic Resonance Imaging Handbook: Imaging of the Pelvis, Musculoskeletal System, and Special Applications to CAD is a timely addition to the growing body of literature in the field. Offering comprehensive coverage of cutting-edge imaging modalities, this book: Discusses MRI of the urinary system, pelvis, spine, soft tissues, lymphatics, and brain Explains how MRI can be used in fetal, pediatric, forensic, postmortem, and computer-aided diagnostic (CAD) applications Highlights each organ's anatomy and pathological processes with high-quality images Examines the protocols and potentialities of advanced MRI scanners such as 7 T systems Includes extensive references at the end of each chapter to enhance further study Thus, the Magnetic Resonance Imaging Handbook: Imaging of the Pelvis, Musculoskeletal System, and Special Applications to CAD provides radiologists and imaging specialists with a valuable, state-of-the-art reference on MRI.
This book covers state-of-the-art medical image analysis approaches currently pursued in autism research. Chapters cover recent advances in diagnosis using structural neuroimaging. All aspects of imaging are included, such as electrophysiology (EEG, ERP, QEEG, and MEG), postmortem techniques, and advantages and difficulties of depositing/acquiring images in larger databases. The book incorporates 2D, 3D, and 4D imaging and advances scientific research within the broad field of autism imaging.
This authoritative reference reviews current and emerging molecular imaging modalities that are expected to impact the detection and treatment of lung diseases in the near future-including applications in gene expression and inflammation imaging; the imaging of pulmonary cytokine regulation; the molecular imaging of angiogenesis, the airways, and lung cancer; and the imaging of cellular death and cell trafficking.
Many topics have inspired significant amounts of neuroimaging research in recent years, and the study of mental imagery was one of the earliest to receive a thorough empirical investigation. Twenty years later, the goal of understanding this pervasive but elusive phenomenon continues to motivate a number of sustained research programs on the part of cognitive psychologists and neuroscientists. The issues at stake are easy to formulate, even if the answers sometimes may be difficult to obtain: Which parts of the human brain are active when a person generates a memory image of an absent object? To what extent does mental imagery activate cortical structures known to subserve perceptual visual experience? If imagery and like-modality perception produce similar patterns of brain activation, what sorts of theories should cognitive scientists develop about the underlying mechanisms? How can we best understand why people differ in their imagery abilities? These are questions to which the contributors to the special issue "Neuroimaging of Mental Imagery" offer answers, through seven original studies based on the use of modern neuroimaging techniques, primarily positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). These techniques are used in the context of a variety of cognitive tasks involving memory, problem solving, and other processes. Unlike most research in psychology, much of the work reported here explicitly addresses individual differences, which must be considered carefully in order to provide comprehensive accounts of the results of imagery experiments. Although these investigations were planned and carried out independently, we find a remarkable convergence among them. And this may be the surest sign that a field is indeed moving forward.
A companion to the Insight Toolkit An introduction to the theory of modern medical image processing, including the analysis of data from - X-ray computer tomography, - magnetic resonance imaging, - nuclear medicine, - and ultrasound. Using an algorithmic approach, and providing the mathematical, statistical, or signal processing as needed for background, the authors describe the principles of all methods implemented in the Insight Toolkit (ITK), a freely available, open- source, object-oriented library. The emphasis is on providing intuitive descriptions of the principles and illustrative examples of results from the leading filtering, segmentation, and registration methods. This book covers the mathematical foundations of important techniques such as: - Statistical pattern recognition, - PDE-based nonlinear image filtering, - Markov random fields, - Level set methods, - Deformable models, - Mutual information, image-based registration - Non-rigid image data fusion With contributions from: Elsa Angelini, Brian Avants, Stephen Aylward, Ting Chen, Jeffrey Duda, Jim Gee, Luis Ibanez, Celina Imielinska, Yinpeng Jin, Jisung Kim, Bill Lorensen, Dimitris Metaxas, Lydia Ng, Punam Saha, George Stetten, Tessa Sundaram, Jay Udupa, Ross Whitaker, Terry Yoo, and Ying Zhuge. The Insight Toolkit is part of the Visible Human Project from the National Library of Medicine, with support from NIDCR, NINDS, NIMH, NEI, NSF, TATRC, NCI, and NIDCD.
Designed not only to give you the facts, but to help you understand and remember them, Learning Electrocardiography: A Complete Course, Fourth Edition is a learning tool for students and a reference for advanced trainees and technicians. The author's step-by-step teaching method lets you focus on the information as you need it and proceed at your own pace. He combines twenty years of teaching experience with the latest information on new methods and uses of electrocardiography. Brief and to the point, the text explains how an electrocardiograph works, how to draw a hexaxial system, plot vectors, produce a good ECG tracing, and draw a spatial vector. You will learn how to produce a technically good electrocardiograph, perform an office exercise test without a treadmill, and recognize the presence of chronic obstructive pulmonary disease without the necessity of diagnosing right ventricular hypertrophy. Providing a logical, clear, and complete approach to the subject, Learning Electrocardiography: A Complete Course, Fourth Edition is the resource to use when learning or reviewing electrocardiography.
Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
Comprised of chapters carefully selected from CRC's best-selling engineering handbooks, volumes in the Principles and Applications in Engineering series provide convenient, economical references sharply focused on particular engineering topics and subspecialties. Culled from the Biomedical Engineering Handbook, Biomedical Imaging provides an overview of the main medical imaging devices and highlights emerging systems. With applications ranging from imaging the whole body to replicating cellular components, the imaging modalities discussed include x-ray systems, computed tomographic systems, magnetic resonance imaging, nuclear medicine, ultrasound, MR microscopy, virtual reality, and more.
Formulated by members of the International Scientific Committee of Radionuclides in Nephro-urology (ISCORN), Functional Imaging in Nephro-urology is not a textbook on uronephrology or radionuclides in nephro-urology, or even a book on new techniques in imaging. What the editor and authors provide here is a unique opportunity to evaluate the strategic management techniques (both diagnosis and follow-up) of a number of uronephrological entities. Demonstrating the experience of the authors in using various imaging modalities, and detailing the benefits and controversies which are associated with their clinical applications, this text presents management strategies based on the patient, the choice of modality, and cost implications. Detailed, well-referenced and highly illustrated, this is an important book for radiologists, nephrologists and urologists working with children and adults, specialists in renal nuclear medicine, and pediatricians.
Now in its fourth edition, this book presents a complete course in electrocardiography (ECG) for students and a reference for advanced trainees and technicians. The author's step-by-step approach lets readers focus only on needed information and proceed at their own pace. Brief and to the point, the text explains how an electrocardiograph works, how to draw a hexaxial system, plot vectors, produce a good ECG tracing, and how to draw a spatial vector. Advanced material is clearly marked, allowing students to work through the complete text with just enough theory to understand the facts and providing advanced trainees with a review and foundation for further study.
To meet the demands of practicing radiologic technologist and students in training, Blackwell introduces the latest volume of the Rad Tech's Guide Series. "Rad Tech's Guide to Equipment Operation and Maintenance" promises a clinically-relevant introductory review of radiographic imaging systems. This condensed handbook is both a concise review for board preparation exams, as well as handy reference guide for the busy rad tech. This on the spot reference features:
The leading reference book in the field of electrodiagnostic medicine just got better with this remarkable new edition, which is thoroughly revised and updated. Written by three of the leading authorities in the field along with several expert contributors, this comprehensive textbook continues to provide the fundamentals as well as the practical, clinical applications of electrodiagnostic medicine for novices and experienced practitioners alike. The text is complemented by a superb CD-ROM containing videos of waveforms The text is clear and concise, and enhanced by hundreds of illustrations and tables. "The best single reference book currently available in the field." - Excerpt from a review of the first edition of this book from the New England Journal of Medicine New chapters include Heriditary Neuropathies, Quantitative Sensory Testing, and Chemical Denervation All chapters from previous edition were extensively reworked and several topics (myopathies, polyneuropathies) were expanded to generate multiple chapters
Dentistry is a branch of medicine with its own particularities and very different fields of action, and is generally regarded as an interdisciplinary field. The use of new technologies is currently the main driving force for the series of international conferences on Biodental Engineering (BIODENTAL). BIODENTAL ENGINEERING V contains the full papers presented at the 5th International Conference on Biodental Engineering (BIODENTAL 2018, Porto, Portugal, 22-23 June 2018). The conference had two workshops, one of them dealing with computational imaging combined with finite element method, the other dealing with bone tissue remodelling models. Additionally, the conference had three special sessions and sixty contributed presentations. The topics discussed in BIODENTAL ENGINEERING V include: Aesthetics Bioengineering Biomaterials Biomechanical disorders Biomedical devices Computational bio- imaging and visualization Computational methods Dental medicine Experimental mechanics Signal processing and analysis Implantology Minimally invasive devices and techniques Orthodontics Prosthesis and orthosis Simulation Software development Telemedicine Tissue engineering Virtual reality The purpose of the series of BIODENTAL Conferences on Biodental Engineering, initiated in 2009, is to perpetuate knowledge on bioengineering applied to dentistry, by promoting a comprehensive forum for discussion on recent advances in related fields in order to identify potential collaboration between researchers and end-users from different sciences.
Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy describes in detail the physics germane to the development of a particular form of clinical conformal radiotherapy called intensity modulated radiation therapy (IMRT). IMRT has become a topic of tremendous importance in recent years and is now being seriously investigated for its potential to improve the outcome of radiation therapy. The book collates the state-of-the-art literature together with the author's personal research experience and that of colleagues in the field to produce a text suitable for new research workers, Ph.D. students, and practicing radiation physicists that require a thorough introduction to IMRT. Fully illustrated, indexed, and referenced, the book has been prepared in a form suitable for supporting a teaching course.
Automatic image analysis has become an important tool in many fields of biology, medicine, and other sciences. Since the first edition of Image Analysis: Methods and Applications, the development of both software and hardware technology has undergone quantum leaps. For example, specific mathematical filters have been developed for quality enhancement of original images and for extraction of specific features of interest. Also, more complex programs have been developed for the analysis of object forms in distinguishing cancer cells from normal tissue cells. Just as significant, three-dimensional analysis of proteins, organelles, or macroscopic objects is even more complex. In addition, recent space-based experiments have optimized techniques for the extraction of movement parameters of numerous motile objects.
Minimally invasive medicine has the goal of providing health care with minimal trauma. When minimally invasive surgery is utilized, it reduces the length of hospital stays, lowers costs, lowers pain, and reduces blood loss. Other minimally invasive techniques minimize radiation exposure, tissue damage, and drug side effects. Collecting contributions from workers in various fields within the sphere of minimally invasive medical technology, this book provides essential information for those involved with researching, designing, and using minimally invasive devices and systems. It emphasizes the technology required to accomplish minimally invasive medicine. The book will be of interest to biomedical engineers, medical physicists, and health care providers who want to know the technical workings of their devices and instruments.
Vortex Formation in the Cardiovascular System will recapitulate the current knowledge about the vortex formation in the cardiovascular system, from mechanics to cardiology. This can facilitate the interaction between basic scientists and clinicians on the topic of the circulatory system. The book begins with a synopsis of the fundamentals aspects of fluid mechanics to give the reader the essential background to address the proceeding chapters. Then the fundamental elements of vortex dynamics will be discussed, explaining the conditions for their formation and the rules governing their dynamics. The main equations are accompanied by mathematical models. Cardiovascular vortex formation is first analyzed in physiological, healthy conditions in the heart chambers and in the large arterial vessels. The analysis is initially presented with an intuitive appeal grounded on the physical phenomena and a focus on its clinical significance.In the proceeding chapters, the knowledge gained from either clinical or basic science literature will be discussed. The corresponding mathematical elements will finally be presented to ensure the adequate diligence. The proceeding chapters ensue to the analysis of pathological conditions, when the reader may have developed the ability to recognize normal from abnormal vortex formation phenomenon. Pathological vortex formation represents vortices that develop at sites where normally laminar flow should exist, e.g. stenosis and aneurisms. This analysis naturally leads to the interaction of vortices due to the surgical procedures with respect to prediction of changes in vortex formation. The existing techniques, from medical imaging to numerical simulations, to explore vortex flows in the cardiovascular systems will also be described. The presentations are accompanied by the mathematical definitions can that be understandable for reader without the advanced mathematical background, while an interested reader with more advanced knowledge in mathematics can be referred to references for further quantitative analyses. The book pursues the objective to transfer the fundamental vortex formation phenomena with application to the cardiovascular system to the reader. This book will be a valuable support for physicians in the evaluation of vortex influence on diagnosis and therapeutic choices. At the same time, the book will provide the rigorous information for research scientists, either from medicine and mechanics, working on the cardiovascular circulation incurring with the physics of vortex dynamics.
Liver metastases are a frequent and often fatal occurrence in cancer patients, particularly those with malignancies of the gastrointestinal (GI) tract. While recent improvements in surgical techniques and a more aggressive approach to resection of liver metastases have improved long term survival for some patients, most patients with hepatic metastases still succumb to their disease. To improve these dismal statistics, a better understanding of the biology of liver metastasis, particularly the early stages that can be targeted for prevention, is essential. Once cancer cells enter the liver, several different scenarios may occur. The cancer cells may be immediately destroyed by local defence mechanisms, they may enter a state of dormancy as solitary cells and never produce a metastasis, initiate a short-lived process of proliferation that is aborted before a metastasis is established or actively proliferate to form macrometastases. The chapters in Part I of this book provide insight into the cellular/molecular mechanisms that determine which of these scenarios prevails. Written by experts researchers in the filed of metastasis, these chapters provide state-of-the art reviews on the cellular and molecular processes that impact the early stages of the metastatic process. The unique microenvironment of the liver, its various anatomical, cellular and molecular features and the impact they have on metastasis are highlighted. In addition, the role of inflammation (pre-existing and tumor-induced), host innate and adaptive immune responses, cytokines, chemokines, growth factors and the unique molecular signatures of metastatic tumor cells are reviewed with an underscoring of the translational implications of the current state of knowledge. Against this background, the chapters in Part II of the book provide critical reviews on major aspects of the clinical management of hepatic metastases. These include imaging strategies, surgical and chemotherapeutic treatment approaches and the use of targeted biological therapeutics such as anti-angiogenic drugs as treatment modalities. By combining information on biological and clinical aspects of liver metastasis, this volume will serve as an excellent resource for scientists, clinicians, clinician/ scientists and trainees in the domains of oncology, surgical oncology, hepatobiliary physiology and radiology. "
This timely overview of dose, benefit, and risk in medical imaging explains to readers how to apply this information for informed decision-making that improves patient outcomes. The chapters cover patient and physician perspectives, referral guidelines, appropriateness criteria, and quantifying medical imaging benefits. The authors have included essential discussion about radiologic physics in medical imaging, fundamentals of dose and image quality, risk assessment, and techniques for optimization and dose reduction. The book highlights practical implementation aspects with useful case studies and checklists for treatment planning. Clinicians, students, residents, and professionals in medical physics, biomedical engineering, radiology, oncology, and allied disciplines will find this book an essential resource with the following key features: Discusses risk, benefit, dose optimization, safety, regulation, radiological protection, and shared & informed decision-making. Covers regulatory oversight by government agencies, manufacturers, and societies. Highlights best practices for improving patient safety and outcomes. Gives guidelines on doses associated with specific procedures.
The second edition of this volume provides up-to-date methods on the main methodological aspects of functional MRI (fMRI), applying fMRI to the study of central nervous system, and future evolutions of fMRI techniques. fMRI: Method and Protocols, Second Edition guides the reader through chapters on basic knowledge for the understanding of the technical aspects of fMRI, overview of the main results derived from the application of fMRI to the study of healthy individuals, application of fMRI to assess the role of brain plasticity in the major neurological and psychiatric conditions, and novel approaches for the integration of fMRI data. Concise and easy-to-use, fMRI: Method and Protocols, Second Edition aims to be useful to clinicians and researchers with a user-friendly summary of the field and necessary background ensuring further successful studies.
The Basic Bookshelf for Eyecare Professionals is a series that provides fundamental and advanced material with a clinical approach to clinicians and students. A special effort was made to include information needed for the certification exams in ophthalmic and optometric assisting, low vision, surgical assisting, opticianry, and contact lens examiners. This concise, easy-to-read manual is an excellent introduction to the fundamental techniques of film based imaging of the eye. With a back-to-basics approach this text will reduce any fear or anxiety that you may have related to learning the craft of ocular photography. Clinical Ocular Photography is organized in a way that allows quick and easy understanding on a specific subject. Each chapter stands alone, allowing the reader to tackle one specific topic at a time. With clear explanations of all clinical uses of photography in ophthalmology, this book is the perfect resource for the beginning or experienced ocular photographer.
With the increasing interest in the experimental and clinical application of molecular imaging many institutions create research groups or interdisciplinary centers focussing on the complex development process of this new methodology. The aim for this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation.
Digestive diseases have always been a major threat to global health. Despite the rapid advances in various diagnostic modalities, many a time the final verdict can be elusive and present a diagnostic challenge for the attending doctor. The book presents 50 real life cases to illustrate an evidence based approach for the diagnosis, investigation and management of gastrointestinal diseases commonly encountered in everyday practice, with a special focus on the interpretation of endoscopic and radiological images. This book provides a pragmatic approach for medical students, residents, specialist trainees and specialists alike who have an interest in gastroenterology. Other healthcare providers, such as general practitioners, nurses and dieticians, will also benefit from these case illustrations. The authors of this book are based at the Institute of Digestive Disease, Chinese University of Hong Kong. This institute has contributed to major breakthroughs that have improved the clinical management of digestive diseases including, but not limited to, the advent of endoscopic therapies and minimally invasive surgery, molecular diagnostic tools for cancers and inflammatory bowel disease, and the development of novel treatments for acid peptic disease and viral hepatitis. |
![]() ![]() You may like...
Personology - From Individual To…
C. Moore, H. Viljoen, …
Paperback
![]()
|