![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Medical imaging > General
This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. The areas of application of this technique are in biomedicine, medicine, life sciences, nanotechnology and materials sciences.
Gamma cameras are traditionally large devices that are situated in nuclear medicine departments, but recent advances in detector design have enabled the production of compact gamma cameras that allow nuclear imaging at the patient bedside and in the operating theatre. Gamma Cameras for Interventional and Intraoperative Imaging is the first book to cover this new area of imaging, and provides a unique insight into the experimental and clinical use of small field of view gamma cameras in hospitals. This book explores advances in the design and operation of compact gamma cameras and conducts a thorough review of current SFOV systems, before exploring the clinical applications of the technology. It is an essential reference for surgeons, operating theatre staff, clinical scientists (medical physicists), technologists, nuclear physicians and radiologists whose patients could benefit from this technology.
This books provides an excellent survey of and introduction to new methods of biological imaging and sensing. The main topics discussed are cell imaging, multiphoton microscopy for biomedical studies, molecular imaging, infrared imaging, biomedical magnetic imaging and microscopy with laser-trapped particles. The book also deals with nanosurgery with light, the effects of ultrasound on tissue, diagnostics, near- and far-infrared transmission of biomedical information, and cell sensors. This book will be a valuable resource for both medical doctors and biophysicists.
This book is an essential resource describing a wide range of approaches and technologies in the areas of quantitative EEG (QEEG) and neurotherapy including neurofeedback and neuromodulation approaches. It emphasizes practical, clinically useful methods, reported by experienced clinicians who have developed and used these approaches first hand. These chapters describe how the authors approach and use their particular combinations of technology, and how clients are evaluated and treated. This resource, which is encyclopedic in scope, provides a valuable and broad, yet sufficiently detailed account, to help clinicians guide the future directions in client assessment and neurotherapeutic treatment. Each contribution includes literature citations, practical information related to clinical interventions, and clinical outcome information.
This book highlights recent technological advances, reviews and applications in the field of cardiovascular engineering, including medical imaging, signal processing and informatics, biomechanics, as well as biomaterials. It discusses the use of biomaterials and 3D printing for tissue-engineered heart valves, and also presents a unique combination of engineering and clinical approaches to solve cardiovascular problems. This book is a valuable resource for students, lecturers and researchers in the field of biomedical engineering.
For centuries the analysis of the heart rhythm has belonged to the foundations of medical art. We know that doctors in ancient Tibet used the interpretation of the heart rate to draw prognostic conclusions-somehow a modern rationale-that deserves further attention. The rapid advancement of science is providing more and more information about the details, but the subatomic resolution of structures hides the risk and the complex procedures are fragmented into static impressions. The same has happened to the ECG. The revolutionary development, acknowledged by the Nobel Prize for Einthoven, ledfromtheanalysisofthedynamicheartratetothestaticanalysisofthe heartstream curve. It is only with the ECG Holter recording over longer periods that the cardiologists rediscovered the old dynamic. With the continuous recording of the heart rate and its periodicity, it became accessible to a new dimension, a dim- sion that requires technically well-de?ned foundations for accurate data coll- tion, detailed knowledge of the electrocardiologic particularities of arrhythmia, and medical knowledge for the translation of the results into a diagnostic synthesis. With the ECG Holter the issue is no longer just to detect an arrhythmia, but also to determine dynamic circumstance in which the critical event occurred. In fact, we investigate the trigger, the event, and the context, and we have to integrate all of that information within the clinical picture, from the pathology right through to the symptom-indeed a multi-dimensional task.
Most books on imaging in sports medicine are concerned with the particular joints or anatomy involved in sports-related injuries. This book, however, takes a different perspective by looking at injuries that are associated with specific sports. All of the well-known major sports, such as football, tennis, and basketball, are included, as are many less common but still very popular sports, such as baseball, American football, and rugby. The chapters on sports-specific injuries are preceded by two chapters on the perspective of clinicians and another two chapters on the general use of MR imaging and ultrasound in sports medicine. The authors of the book are world-renowned experts from five continents. Imaging in Sports-Specific Musculoskeletal Injuries should be of great interest to radiologists, sports medicine physicians, orthopedic surgeons, and rehabilitation physicians, and to anyone interested in the treatment of sports-related injuries.
Cardiovascular and Neurovascular Imaging: Physics and Technology explains the underlying physical and technical principles behind a range of cardiovascular and neurovascular imaging modalities, including radiography, nuclear medicine, ultrasound, and magnetic resonance imaging (MRI). Examining this interdisciplinary branch of medical imaging from academic, clinical, and industrial perspectives, this comprehensive book: Covers each major imaging modality as well as special applications, time-resolved techniques, and image-guided therapies Discusses image quality and accuracy, radiation safety and dosimetry, and image formation and analysis Explores current and future trends in vascular imaging procedures and technologies Featuring chapters authored by field experts, Cardiovascular and Neurovascular Imaging: Physics and Technology combines the latest information on the physics and technology of cardiovascular and neurovascular imaging under one cover, providing students, professionals, and researchers with a single, state-of-the-art reference.
The ECG is one of the most commonly used investigations in contemporary medicine. Interpretation of the ECG can appear daunting, but it is actually relatively straightforward as long as a systematic approach is taken. Pocket ECGs for Nurses assists with this task by providing a detailed yet readable introduction to ECG interpretation, supplemented by clinical information about how to act based on its findings. The book begins by covering the basics of cardiac anatomy and physiology and how these relate to the ECG. It then guides nurses on how to perform a high-quality ECG recording, interpret it and make sense of common ECG abnormalities. The book also includes a guide to ambulatory and bedside monitoring as well as useful chapter summaries. This pocketbook is an essential reference for the non-specialist who needs to be able to record and perform a basic and safe interpretation of an ECG. Written in plain language with clear explanations, bullet lists and summaries throughout, this handy guide will benefit nurses as well as paramedics and other allied health professionals in recording and reading ECGs.
Computational Optical Biomedical Spectroscopy and Imaging covers recent discoveries and research in the field by some of the best inventors and researchers in the world. It also presents useful computational methods and applications used in optical biomedical spectroscopy and imaging. Topics covered include: New trends in immunohistochemical, genome, and metabolomics imaging Computer-aided diagnosis of interstitial lung diseases based on CT image analysis Functional near-infrared spectroscopy and its applications in neurosciences Applications of vibrational spectroscopic imaging in personal care studies Induced optical natural fluorescence spectroscopy for Giardia lamblia cysts Nanoimaging and polarimetric exploratory data analysis Fluorescence bioimaging with applications to chemistry Medical imaging instrumentation and techniques The book also discusses future applications, directions, opportunities, and challenges of optical biomedical spectroscopy and imaging in technical industry, academia, and government. This valuable resource introduces key concepts of computational methods used in optical biomedical spectroscopy and imaging in a manner that is easily understandable to beginners and experts alike.
Changes in the neurological functions of the human brain are often a precursor to numerous degenerative diseases. Advanced EEG systems and other monitoring systems used in preventive diagnostic procedures incorporate innovative features for brain monitoring functions such as real-time automated signal processing techniques and sophisticated amplifiers. Highlighting the US, Europe, Australia, New Zealand, Japan, Korea, China, and many other areas, EEG/ERP Analysis: Methods and Applications examines how researchers from various disciplines have started to work in the field of brain science, and explains the different techniques used for processing EEG/ERP data. Engineers can learn more about the clinical applications, while clinicians and biomedical scientists can familiarize themselves with the technical aspects and theoretical approaches. This book explores the recent advances involved in EEG/ERP analysis for brain monitoring, details successful EEG and ERP applications, and presents the neurological aspects in a simplified way so that those with an engineering background can better design clinical instruments. It consists of 13 chapters and includes the advanced techniques used for signal enhancement, source localization, data fusion, classification, and quantitative EEG. In addition, some of the chapters are contributed by neurologists and neurosurgeons providing the clinical aspects of EEG/ERP analysis. Covers a wide range of EEG/ERP applications with state-of-the-art techniques for denoising, analysis, and classification Examines new applications related to 3D display devices Includes MATLAB (R) codes EEG/ERP Analysis: Methods and Applications is a resource for biomedical and neuroscience scientists who are working on neural signal processing and interpretation, and biomedical engineers who are working on EEG/ERP signal analysis methods and developing clinical instrumentation. It can also assist neurosurgeons, psychiatrists, and postgraduate students doing research in neural engineering, as well as electronic engineers in neural signal processing and instrumentation.
There are many modalities available to image the heart and this variety and number of scan types can prove to be daunting to radiologists and cardiologists. In addition, there are the numerous devices, stents, valves and other paraphernalia which are employed in the management of cardiac disease, which need to be recognised and identified when interpreting any of these various scans. Containing 75 challenging clinical cases and illustrated with superb, high quality images, Cardiac Imaging covers a wide range of cardiac imaging problems from basic radiographic cases to more challenging and esoteric cases involving echocardiography, cardiac MRI, cardiac CT and myocardial perfusion imaging. The book uses an accessible format for quick assimilation. It remains an invaluable text for all radiology and cardiology professionals in practice and in training, from hospital-based doctors preparing for higher examinations to established physicians in their continuing professional development.
Combining a professional development course on diagnostic endoscopy from SPIE (the international society advancing light-based research) and the authorsa (TM) graduate course on biomedical optics, this work is written for researchers in medical optics and biomedical engineering as well as graduate medical optics students. It uses extensive examples/case studiesto familiarize readers with the the basics of endoscopic optics, the pros and cons of white light endoscopy and fluorescence endoscopy for diagnostic applications, and various microscopic endoscopy imaging modalities.It covers basic optics, details of design and biomedical uses, as well as microscopic endoscopy, and endoscopic spectroscopy.
This brand new guide assists students, interns and residents in developing a functional understanding of the set-up, workings and interpretation of ECGs * Step-by-step graphics and short, bite-sized explanations * Covers all major cardiac abnormalities including hypertrophy, arrhythmias, conduction blocks, and pre-excitation syndromes * Begins with a section on physiology of the heart and the basic set up of ECG recording * Features top tips on what to look for, complete with illustrated examples * Supported by a companion website featuring additional practice tracings
Edited by and featuring contributions from world-class researchers, Ophthalmological Imaging and Applications offers a unified work of the latest human eye imaging and modeling techniques that have been proposed and applied to the diagnosis of ophthalmologic problems, including inflammation, cataracts, diabetic retinopathy, and glaucoma. With a focus on theory, basic principles, and results derived from research, the book: Explores various morphological, textural, higher-order spectral, and wavelet transformation techniques used to extract salient features from images of the human eye Examines 2D and 3D finite element and boundary element models of the human eye developed to simulate thermal steady-state conditions Addresses the difficult task of benchmarking the validity of human eye imaging techniques and computer-simulated results with experimental measurements Intended to be a companion to Image Analysis and Modeling in Ophthalmology, this volume covers several aspects of multimodal ophthalmological imaging and applications, presenting information in an accessible manner to appeal to a wide audience of students, researchers, and practitioners. Ophthalmological Imaging and Applications considers promising simulations that pave the way for new possibilities in computational methods for eye health care.
Computational Vision and Medical Image Processing. VIPIMAGE 2013 contains invited lectures and full papers presented at VIPIMAGE 2013 - IV ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing (Funchal, Madeira Island, Portugal, 14-16 October 2013). International contributions from 16 countries provide a comprehensive coverage of the current state-of-the-art in the fields of: 3D Vision; Computational Bioimaging and Visualization; Computational Vision and Image Processing applied to Dental Medicine; Computational Vision; Computer Aided Diagnosis, Surgery, Therapy, and Treatment; Data Interpolation, Registration, Acquisition and Compression; Image Processing and Analysis; Image Segmentation; Imaging of Biological Flows; Medical Imaging; Physics of Medical Imaging; Shape Reconstruction; Signal Processing; Simulation and Modeling; Software Development for Image Processing and Analysis; Telemedicine Systems and their Applications; Trabecular Bone Characterization; Tracking and Analysis of Movement; Virtual Reality. Related techniques covered in this book include the level set method, finite element method, modal analyses, stochastic methods, principal and independent components analysis and distribution models. Computational Vision and Medical Image Processing. VIPIMAGE 2013 is useful to academics, researchers and professionals in Biomechanics, Biomedical Engineering, Computational Vision (image processing and analysis), Computer Sciences, Computational Mechanics and Medicine.
Radiation safety and risk management, a critical issue in the nuclear age, is an ongoing concern in the field of radiation health risk sciences. It is the particular mission and task of the Nagasaki University Global COE program to explore human health risks from radiation on a global scale and to come up with measures for overcoming its negative legacies. Ionizing radiation is a well-documented human cancer risk factor, and long-term health consequences in individuals exposed at a young age to such events as the Hiroshima and Nagasaki atomic bombing are now being followed up. Unique and comprehensive, this book introduces updated radiation health-related issues, including the proper collection and analysis of biological samples, cancer research, psychological effects, fair disclosure, and the effects of low-dose exposure as they apply to future public health policy. Also addressed is the need for emergency radiation medicine in case of accidents.
The field of thermal therapy has been growing tenaciously in the last few decades. The application of heat to living tissues, from mild hyperthermia to high-temperature thermal ablation, has produced a host of well-documented genetic, cellular, and physiological responses that are being researched intensely for medical applications, particularly for treatment of solid cancerous tumors using image guidance. The controlled application of thermal energy to living tissues has proven a great challenge, requiring expertise from multiple disciplines, thereby leading to the development of many sophisticated pre-clinical and clinical devices and treatment techniques. Physics of Thermal Therapy: Fundamentals and Clinical Applications captures the breadth and depth of this highly multidisciplinary field. Focusing on applications in cancer treatment, this book covers basic principles, practical aspects, and clinical applications of thermal therapy. An overview of the fundamentals shows how use of controlled heat in medicine and biology involves electromagnetics, acoustics, thermodynamics, heat transfer, and imaging sciences. The book discusses challenges in the use of thermal energy on living tissues and explores the genetic, cellular, and physiological responses that can be employed in the fight against cancer from the physics and engineering perspectives. It also highlights recent advances, including the treatment of solid tumors using image-guided thermal therapy, microbubbles, nanoparticles, and other cutting-edge techniques.
Adaptive Optics for Biological Imaging brings together groundbreaking research on the use of adaptive optics for biological imaging. The book builds on prior work in astronomy and vision science. Featuring contributions by leaders in this emerging field, it takes an interdisciplinary approach that makes the subject accessible to nonspecialists who want to use adaptive optics techniques in their own work in biology and bioengineering. Organized into three parts, the book covers principles, methods, and applications of adaptive optics for biological imaging, providing the reader with the following benefits: Gives a general overview of applied optics, including definitions and vocabulary, to lay a foundation for clearer communication across disciplines Explains what kinds of optical aberrations arise in imaging through various biological tissues, and what technology can be used to correct for these aberrations Explores research done with a variety of biological samples and imaging instruments, including wide-field, confocal, and two-photon microscopes Discusses both indirect wavefront sensing, which uses an iterative approach, and direct wavefront sensing, which uses a parallel approach Since the sample is an integral part of the optical system in biological imaging, the field will benefit from participation by biologists and biomedical researchers with expertise in applied optics. This book helps lower the barriers to entry for these researchers. It also guides readers in selecting the approach that works best for their own applications.
Endomicroscopy is a newly developed diagnostic tool which enables in vivo microscopy with subcellular resolution during ongoing endoscopy in the upper and lower gastrointestinal tract. Thus, endomicroscopy is a revolutionary technology because it provides the endoscopists for the first time with information about living cells in humans. Endoscopy and pathology are no longer separate subjects and thus endomicroscopy leads to a close interaction between endoscopist and pathologist. This Atlas of Endomicroscopy is the first book dealing with the new insights of endomicroscopy and provides you an overview about the development, the requirements, the technique, current indications and further possibilities of endomicroscopy.
Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications III contains all contributions presented at the International Symposium CompIMAGE 2012 - Computational Modelling of Object Presented in Images: Fundamentals, Methods and Applications (Rome, Italy, 5-7 September 2012). The contributions cover the state-of-art and new trends in the fields of: - 3D Vision; - Biometric Recognition; - Computational Bioimaging and Visualization; - Computer Vision in Robotics and Automation; - Data Acquisition, Interpolation, Registration and Compression; - Image Enhancement and Restoring; - Image Processing and Analysis; - Image Segmentation; - Medical Imaging; - Modeling and Simulation; - Motion and Deformation Analysis; - Remote Sensing; - Scientific Visualization Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications III addresses different techniques, such as optimization methods, geometry, finite element method, principal component analysis, stochastic methods, neural networks and fuzzy logic. The book is useful to researchers and students with multidisciplinary interests related to Computational Vision, Computational Mechanics, Medicine, Engineering and Architecture.
Advanced image processing and mathematical modeling techniques are increasingly being used for the early diagnosis of eye diseases. A comprehensive review of the field, Human Eye Imaging and Modeling details the latest advances and analytical techniques in ocular imaging and modeling. The first part of the book looks at imaging of the fundus as well as infrared imaging. It begins by exploring developments in the analysis of fundus images, particularly for the diagnosis of diabetic retinopathy and glaucoma. It also reviews anterior segment imaging and reports on developments in ocular thermography, especially the use of thermal imaging as the basis of tear evaporimetry and dry eye diagnosis. The second part of the book delves into mathematical modeling of the human eye. Coverage includes modeling of the eye during retinal laser surgery, a framework for optical simulation, heat distribution using a 3D web-splines solution, and exposure to laser radiation. The text also examines computer simulation of the human eye based on principles of heat transfer, as well as various bioheat equations to predict interior temperatures based on the surface temperature. Featuring contributions by established experts in eye imaging, this is a valuable reference for medical personnel and researchers who want to know more about state-of-the-art computer-based imaging and detection methods. It presents novel imaging and modeling algorithms that can aid in early diagnosis, with the aim of enriching the lives of people suffering from eye abnormalities.
Targeted Molecular Imaging covers the development of novel diagnostic approaches that use an imaging probe and agent to noninvasively visualize cellular processes in normal and disease states. It discusses the concept, development, preclinical studies, and, in many cases, translation to the clinic of targeted imaging agents. The many case studies that form the core of this book deal with the development and translation of non-nuclear probes and radiotracers; other sections address critical topics such as In vitro studies, small animal research, and the application of targeted probes for nuclear, optical and MRI imaging. The chapters use a common format to demonstrate how various investigators approach the comprehensive task of validating a new targeted probe. Targeted Molecular Imaging is a timely resource for a rapidly advancing field, and addresses:
Using these case studies, investigators can generalize and apply the information to their own specific targeted probe. The insights provided by the contributors, experts who have developed these approaches in their own groups, help guide scientists planning to translate imaging agents from the concept stage to clinical application.
This unique and comprehensive atlas by an expert practioner provides an innovative pictorial guide to flexible bronchoscopy, one of the most exciting and challenging procedures in respiratory medicine today. Includes the very latest procedures and techniques Comprehensive coverage, guides you through the range of anatomical and pathological possibilities A step-by-step guide to the use of bronchoscopic techniques, interpretation of images and differential diagnoses Integrates naked eye, bronchoscopic and radiological anatomy to give you a thorough understanding of the procedure Numerous full colour illustrations and sound practical advice make this a key text for learning and refining your technique The book will be invaluable to those training in respiratory medicine, plus also specialist respiratory nurses and practising pulmonologists who wish to expand their practice and knowledge of the technique. |
You may like...
A Patient's Guide to Medical Imaging
Ronald Eisenberg, JD, MD, FACR, Alexander Margulis, MD
Hardcover
R1,210
Discovery Miles 12 100
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,019
Discovery Miles 30 190
Targeted Cancer Imaging - Design and…
Mehdi Azizi, Hadi Kokabi, …
Paperback
R2,614
Discovery Miles 26 140
Imaging Neuroinflammation, Volume 9
Cornelia Laule, John Port
Paperback
R3,351
Discovery Miles 33 510
Computing and Visualization for…
Simone Balocco, Maria A Zuluaga, …
Hardcover
|