![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Medical imaging > General
Gamma cameras are traditionally large devices that are situated in nuclear medicine departments, but recent advances in detector design have enabled the production of compact gamma cameras that allow nuclear imaging at the patient bedside and in the operating theatre. Gamma Cameras for Interventional and Intraoperative Imaging is the first book to cover this new area of imaging, and provides a unique insight into the experimental and clinical use of small field of view gamma cameras in hospitals. This book explores advances in the design and operation of compact gamma cameras and conducts a thorough review of current SFOV systems, before exploring the clinical applications of the technology. It is an essential reference for surgeons, operating theatre staff, clinical scientists (medical physicists), technologists, nuclear physicians and radiologists whose patients could benefit from this technology.
Reflecting recent major advances in the field of artificial intelligence, Developing the Digital Lung, From First Lung CT to Clinical AI, by Dr. John Newell, is your go-to reference for all aspects of applied artificial intelligence in lung disease development, including application to clinical medicine. It provides a unique overview of the field, beginning with a review of the origins of artificial intelligence in the mid-1970s and progressing to its application to clinical medicine in the early 2020s. Organized based on the four stages of development, this practical, easy-to-use resource helps you effectively apply artificial intelligences to lung imaging. Traces the development of precise quantitative CT of diffuse lung disease through the use of applied AI, leading to faster effective diagnosis of patients with lung disease. Reviews CT manufacturers, models and scanning protocol used to produce the 3D digital maps of the lungs. Discusses how the data processed by AI algorithms can produce measures of emphysema, air trapping, and airway wall thickening in subjects with COPD and measures of pulmonary fibrosis and traction bronchiectasis in idiopathic pulmonary fibrosis (IPF). Demonstrates the differences between reactive machine AI and limited memory AI methods. Includes comprehensive case studies and current information on cloud computing. An eBook version is included with purchase. The eBook allows you to access all of the text, figures and references, with the ability to search, customize your content, make notes and highlights, and have content read aloud.
With a step-by-step method for accurate interpretation of the ECG, this third edition of Rapid ECG Interpretation describes a systematic approach consistent with the changes in cardiology practice over the past decade. All diagnostic ECG criteria are given with relevant and instructive ECGs, providing a quick review or refresher for proficiency tests and for physicians preparing for the ECG section of the Cardiovascular Diseases Board Examination. This edition contains over 320 ECGs and instructive illustrations, including 81 new ECG tracings. Clear and concise 11-step methods are set out in a user-friendly synopsis format.
This timely overview of dose, benefit, and risk in medical imaging explains to readers how to apply this information for informed decision-making that improves patient outcomes. The chapters cover patient and physician perspectives, referral guidelines, appropriateness criteria, and quantifying medical imaging benefits. The authors have included essential discussion about radiologic physics in medical imaging, fundamentals of dose and image quality, risk assessment, and techniques for optimization and dose reduction. The book highlights practical implementation aspects with useful case studies and checklists for treatment planning. Clinicians, students, residents, and professionals in medical physics, biomedical engineering, radiology, oncology, and allied disciplines will find this book an essential resource with the following key features: Discusses risk, benefit, dose optimization, safety, regulation, radiological protection, and shared & informed decision-making. Covers regulatory oversight by government agencies, manufacturers, and societies. Highlights best practices for improving patient safety and outcomes. Gives guidelines on doses associated with specific procedures.
Sensor technologies and applications are evolving rapidly driven by the demand for new sensors for monitoring and diagnostic purposes to enable improvements in human health and safety. Simultaneously, sensors are required to consume less power, be autonomous, cost less, and be connected by the Internet of Things. New sensor technologies are being developed to fulfill these needs. This book reviews the latest developments in sensor technology and gives the reader an overview of the state-of-the-art in key areas, such as sensors for diagnostics and monitoring. Features Provides an overview of sensor technologies for monitoring and diagnostics applications. Presents state-of-the-art developments in selected topics for sensors that can be used for monitoring and diagnostics in future healthcare, structural monitoring, and smart environment applications. Features contributions from leading international experts in both industry and academia. Explores application areas that include medical diagnostics and screening, health monitoring, smart textiles, and structural monitoring.
This issue of Neuroimaging Clinics of North America focuses on Magnetoencephalography (MEG), and is edited by Drs. Roland Lee and Mingxiong Huang. Articles will include: MEG signal processing, forward modeling, MEG inverse source imaging, and Coherence analysis; Magnetoencephalography for pre-surgical functional mapping; Magnetoencephalography for mild TBI and PTSD; Magnetoencephalography for autism; Magnetoencephalography for schizophrenia; Magnetoencephalography for Alzheimer's disease; Pediatric Magnetoencephalography; The MEG Measurement Techniques; MEG and Language/Linguistics; MEG for Epilepsy; Integration of MEG results into the patient workup - Merging multiple modalities; and more!
Authored by a leading educator, this book teaches the fundamental mathematics and physics concepts associated with medical imaging systems. Going beyond mere description of imaging modalities, this book delves into the mechanisms of image formation and image quality common to all imaging systems: contrast mechanisms, noise, and spatial and temporal resolution, making it an important reference for medical physicists and biomedical engineering students. This is an extensively revised new edition of The Physics of Medical X-Ray Imaging by Bruce Hasegawa (Medical Physics Publishing, 1991), and includes a wide range of modalities such as X-ray CT, MRI and SPECT.
From first principles to current computer applications, Monte Carlo Calculations in Nuclear Medicine, Second Edition: Applications in Diagnostic Imaging covers the applications of Monte Carlo calculations in nuclear medicine and critically reviews them from a diagnostic perspective. Like the first edition, this book explains the Monte Carlo method and the principles behind SPECT and PET imaging, introduces the reader to some Monte Carlo software currently in use, and gives the reader a detailed idea of some possible applications of Monte Carlo in current research in SPECT and PET. New chapters in this edition cover codes and applications in pre-clinical PET and SPECT. The book explains how Monte Carlo methods and software packages can be applied to evaluate scatter in SPECT and PET imaging, collimation, and image deterioration. A guide for researchers and students developing methods to improve image resolution, it also demonstrates how Monte Carlo techniques can be used to simulate complex imaging systems.
This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as physics of x-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
For every physician that interprets ECGs, there is great need to understand a vast amount of information regarding the technique. That the basics of the technique have changed little over the last 100 years means that there is a huge amount of subtle detail that must be learnt to enable its effective use as a diagnostic test. The ECG technique is critical for deciding upon further diagnostic procedures and therapeutic interventions (notably coronary angiography, PTCA, stenting, coronary artery bypass grafting, pacemaker insertion, ablation, electroconversion etc). Without attaining the skills to practice the ECG procedure and knowledge of its diagnostic value - skills often overlooked during medical training - physicians will be unlikely to use it to the benefit of their patients.
The only case-based guide to electromyography-back in a fully revised and updated New Edition! This practical resource examines how to approach, diagnose, and manage the most commonly encoun-tered disorders in the EMG laboratory. Based on actual cases, it correlates patient history, physical exam, EMG findings, relevant anatomy, treatment, and follow-up to help readers sharpen their clinical problem-solving skills. New cases have been added, and every case includes the latest advances in knowledge and technique. Features study questions, answers, and clinical discussions of how experts manage cases to help readers work through the problems presented. Summarizes the results of nerve conduction studies and EMG data with standardized tables. Includes more than 200 relevant imaging studies and anatomic figures. Makes information easy to find with a uniform chapter organization. Offers a consistent approach to electromyography based on Dr. Katirji's broad knowledge and clinical experience. 7 new case studies, including Hereditary Neuropathy with Liability to Pressure Palsy, Ischemic Monomelic Neuropathy, and Myotonic Dystrophy. Three new chapters on Nerve Conduction Studies, Needle EMG Examination, and Specialized Procedures. Many new and revised figures that clarify complex information.
Understand Quantitative Radiobiology from a Radiation Biophysics Perspective In the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses. Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer Treatments The book compiles radiation mechanism information from biophysical publications of the past 50 years, addressing how ionizing radiation produces the killing of stem cells in human tumors. It presents several physical and chemical parameters that can modulate the radiation response of clonogenic cells in tumors. The authors describe the use of the LQ model in basic radiation mechanism studies with cells of relatively homogeneous radiation response and then extend the model to the fitting of survival data generated with heterogeneous cell populations (tumors). They briefly discuss how to use the LQ model for predicting tumor (local) control probability (TCP) and normal tissue complication probability (NTCP). The book also examines potential molecular targets related to alpha- and beta-inactivation and gives suggestions for further molecular characterizations of these two independent processes. Develop Efficacious, Patient-Friendly Treatments at Reduced Costs Focusing on quantitative radiobiology in LQ formulation, this book assists medical physicists and radiation oncologists in identifying improved cancer treatments. It also encourages investigators to translate potentially improved radiotherapy schedules based on TCP and NTCP modeling into actual patient benefit.
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.
Research into the 3D Physiological Human is a very active field focusing on the creation of patient-specific computer models for personalised healthcare. Reporting on how these models can simulate and provide a better understanding of human physiology and pathology, this book also looks at how the evolution and the improvement of technological devices such as scanners, medical instruments, and computer power have helped in our understanding of the human body and its functionalities. The book contains contributions from leading researchers from a variety of disciplines (including computer graphics, biomechanics, knowledge representation, human-machine interfaces etc) associated with medical imaging, simulation, computer-assisted surgery and 3D semantics. Divided into three parts: anatomical and physiological modelling, physically-based simulation, and medical analysis and knowledge management, this book provides a clear picture of the most recent advances in this increasingly important area.
This issue of PET Clinics focuses on FDG-PET/CT Imaging in Infectious and Inflammatory Disorders, and is edited by Drs. Soren Hess and Lars Gormsen. Articles will include: Patient preparation and patient related challenges in infectious/inflammatory disease; Systemic infections (Fever/bacteremia of unknown origin, immunocompromised patients); Infections in bone and prosthetic joints; The infected heart; Inflammatory bowel disease; Pulmonary inflammatory diseases (sarcoidosis including cardiac and COPD); Infection and inflammation imaging: Beyond FDG; Polymyalgia rheumatica; Low grade inflammation; Large vessel vasculitis; Tuberculosis; and more!
Advances have been made in improved signal and image interpolation that derive a unified framework, thus achieving improvement of the approximation properties of the interpolation function regardless of its dimensionality or degree. Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI) presents a novel approach for the improvement of the approximation characteristics of interpolation functions. A unique and original resource, this book approaches both the theory and methodology absent from most publications of its kind, a valuable inclusion for those interested in exploring the innovative approach that this reference proposes.
This second edition is completely revised and improved and contains eight new chapters and six new appendixes. In addition to the theoretical background on light propagation through diffusive media, this update also provides new didactical material, including: A comprehensive statistical approach to the photon penetration depth in diffusive media. An introduction to anomalous transport. An anisotropic transport approach within the framework of diffusion theory. An introduction to the invariance properties of radiative transfer in non-absorbing media. A heuristic explanation of ballistic photon propagation. An expanded description of core Monte Carlo simulation methods. A series of new analytical solutions of the diffusion equation for new geometries. Some original solutions in the time domain of the diffusion equation in the presence of Raman and fluorescence interactions. New MATLAB (R) codes of the presented solutions. A revised and enlarged set of numerical Monte Carlo results for verification of the presented solutions. An augmented bibliography covering the field of tissue optics. Although the theoretical and computational tools provided in this book have their primary use in the field of biomedical optics, there are many other applications in which they can be used, including, for example, analysis of agricultural products, study of forest canopies or clouds, and quality control of industrial food, plastic materials, or pharmaceutical products, among many others.
Neuromuscular imaging has increasingly become an important tool in the detection and diagnosis of inherited and acquired neuromuscular disease. This book is a groundbreaking radiological and neurological overview of current methods and applications of imaging-including aspects of neuroimaging and musculoskeletal imaging-in patients with inherited, metabolic, and inflammatory muscle diseases. Imaging features are discussed in the context of clincial presentation, histopathology, therapeutic options and differential diagnosis. World leading expert contributors give a comprehensive and didactic review of neuromuscular disorders and available imaging modalities, each illustrated with numerous figures. Topics discussed include: -Modalities such as ultrasound, CT and MRI -Muscle anatomy and physiology -Clinical applications in hereditary and acquired myopathies -Clinical applications in motor neuron disorders and peripheral nerve imaging
A comprehensive survey of the use of ultrasound in management of infertile patients is presented in this publication. Particular atten-tion is given to recently developed techniques such as assessment of endometrial changes, ovarian blood flow measurements, and per-cutaneous oocyte retrieval for in vitro fertilization. The very re-cent technique of transvaginal sonography is presented and richly illus-trated with original results obtained in biopsy-guided oocyte re-trieval, and in the precise delineation of follicle size and number for infertility treatment. Guidance in the interpretation of ultrasonic findings, which include potential limitations and pitfalls, is provided in each chapter. Researchers and practitioners interested in the management of infertile patients will find this volume indispensable.
Vulnerable plaque development is the result of a complex series of molecular and cellular events involving inflammation, apoptosis, rupture, and thrombosis. A detailed understanding of the mechanisms underlying the development of high-risk plaques, along with the ability to visualize and diagnose these vulnerable lesions, will lead to the effective management of acute coronary syndromes. High-Risk Atherosclerotic Plaques: Mechanisms, Imaging, Models, and Therapy brings together timely, in-depth reviews by renowned international cardiologists and scientists. Chapters cover the definition, structure, and cellular and molecular mechanisms of high risk plaque development, as well as animal models of vulnerable plaque, plaque imaging, and current and future therapies. Medical experts discuss intravascular ultrasound, optimal coherence tomography, magnetic resonance imaging, and coronary thermography. The final chapter reviews both current and future local and systematic strategies for the therapeutic management of vulnerable plaque. Exploring all aspects of this primary cause of acute coronary syndromes, this informative book updates our knowledge on the detection and treatment of vulnerable plaques. It is a valuable resource that can greatly advance the progress in treatment and prevention.
Divided roughly into two sections, this book provides a brief history of the development of ECG along with heart rate variability (HRV) algorithms and the engineering innovations over the last decade in this area. It reviews clinical research, presents an overview of the clinical field, and the importance of heart rate variability in diagnosis. The book then discusses the use of particular ECG and HRV algorithms in the context of clinical applications.
This book is about pulse nuclear magnetic resonance (NMR), with its techniques, the information to be obtained, and practical advice on performing experiments. The emphasis is on the motivation and physical ideas underlying NMR experiments and the actual techniques, including the hardware used. The level is generally suitable for those to whom pulse NMR is a new technique, be they students in chemistry or physics on the one hand and research workers in biology, geology, or agriculture, on the other. The book can be used for a senior or first year graduate course where it could supplement the standard NMR texts.
Image registration is the process of systematically placing separate images in a common frame of reference so that the information they contain can be optimally integrated or compared. This is becoming the central tool for image analysis, understanding, and visualization in both medical and scientific applications. Medical Image Registration provides the first comprehensive coverage of this emerging field. This monograph details the theory, technology, and practical implementations in a variety of medical settings. International experts thoroughly explain why image registration is important, describe its applications in a nonmathematical way, and include rigorous analysis for those who plan to implement algorithms themselves. It is accessible and informative to those new to the field, yet it provides in-depth treatment for the expert. With its practical examples, extensive illustrations, and comprehensible approach, Medical Image Registration is a must have guide for medical physicists, clinicians, and researchers.
Goals of the Book Overthelast thirty yearsthere has been arevolutionindiagnostic radiology as a result oftheemergenceofcomputerized tomography (CT), which is the process of obtaining the density distribution within the human body from multiple x-ray projections. Since an enormous variety of possible density values may occur in the body, a large number of projections are necessary to ensure the accurate reconstruction oftheir distribution. There are other situations in which we desire to reconstruct an object from its projections, but in which we know that the object to be recon structed has only a small number of possible values. For example, a large fraction of objects scanned in industrial CT (for the purpose of nonde structive testing or reverse engineering) are made of a single material and so the ideal reconstruction should contain only two values: zero for air and the value associated with the material composing the object. Similar as sumptions may even be made for some specific medical applications; for example, in angiography ofthe heart chambers the value is either zero (in dicating the absence of dye) or the value associated with the dye in the chamber. Another example arises in the electron microscopy of biological macromolecules, where we may assume that the object to be reconstructed is composed of ice, protein, and RNA. One can also apply electron mi croscopy to determine the presenceor absence ofatoms in crystallinestruc tures, which is again a two-valued situation."
This authoritative reference reviews current and emerging molecular imaging modalities that are expected to impact the detection and treatment of lung diseases in the near future-including applications in gene expression and inflammation imaging; the imaging of pulmonary cytokine regulation; the molecular imaging of angiogenesis, the airways, and lung cancer; and the imaging of cellular death and cell trafficking. |
You may like...
Cuito Cuanavale - 12 Months Of War That…
Fred Bridgland
Paperback
(4)
Perception and Its Modalities
Dustin Stokes, Mohan Matthen, …
Hardcover
R3,863
Discovery Miles 38 630
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
(11)
Optimal Trajectory Planning and Train…
Yihui Wang, Bin Ning, …
Hardcover
|