Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Other branches of medicine > Medical imaging > General
This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as physics of x-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
This book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; Part II deals with techniques and models of computational intelligence that are suitable for signal processing; and, Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. Illustrative material includes: brief numerical experiments; and, detailed schemes, exercises and more advanced problems.
This book presents a comprehensive overview of current state-of-the-art clinical physiological imaging of brain tumors. It focuses on the clinical applications of various modalities as they relate to brain tumor imaging, including techniques such as blood oxygen level dependent functional magnetic resonance imaging, diffusion tensor imaging, magnetic source imaging/magnetoencephalography, magnetic resonance perfusion imaging, magnetic resonance spectroscopic imaging, amide proton transfer imaging, high angular resolution diffusion imaging, and molecular imaging. Featuring contributions from renowned experts in functional imaging, this book examines the diagnosis and characterization of brain tumors, details the application of functional imaging to treatment planning and monitoring of therapeutic intervention, and explores future directions in physiologic brain tumor imaging. Intended for neuro-oncologists, neurosurgeons, neuroradiologists, residents, and medical students, Functional Imaging of Brain Tumors is a unique resource that serves to advance patient care and research in this rapidly developing field.
The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.
Molecular imaging plays an important role in drug discovery and advanced medical practice. A symposium of world leaders in drug research and development, molecular imaging, and medical therapy including regenerative treatment and radiation therapy has led to the publication of this book. Based on the proceedings of the symposium, many excellent ideas and valuable discussions are introduced that will guide the reader toward new advances in photon detection and protein modification as well as new developments in molecular imaging itself. Both protein modification and photon detection are emerging technologies that hold forth the promise of innovative strategies for drug discovery and medical care. The publication of these proceedings is a timely means of sharing significant experience and knowledge with many specialists all over the world. This book will be of great value to a wide variety of researchers in the fields of drug development and molecular imaging technologies, leading to integrated medical therapy and progress in human health.
The main purpose of this book is to present emerging neuroimaging data in order to define the role of primary and secondary structural and hemodynamic disturbances in different phases of traumatic brain injury (TBI) and to analyze the potential of diffusion tensor MRI, tractography and CT perfusion imaging in evaluating the dynamics of TBI. The authors present a new MRI classification of brain stem and hemispheric cortical/subcortical damage localization that is of significant prognostic value. New data are provided regarding the pathogenesis and dynamics of diffuse and focal brain injuries and qualitative and quantitative changes in the brain white matter tracts. It is shown that diffuse axonal injury can be considered a clinical model of multidimensional "split brain" with commissural, association and projection fiber disorders. The book will be of interest for neuroradiologists, neurosurgeons, neurologists and others with an interest in the subject.
The developing of in vivo neuroscience techniques is rapidly improving the specificity and sensitivity of measurements of brain function. However, despite improvements in individual methods, it is becoming increasingly clear that the most effective research approaches will be multi-modal. Thus, it is the researchers who are familiar with many in vivo techniques who will be able to make the most substantial contributions to our understanding of dynamic brain function. In Dynamic Brain Imaging: Multi-Modal Methods and In Vivo Applications, leading experts specializing in magnetic resonance, electrophysiology, and optical imaging methods explain basic principles of their respective techniques and demonstrate their power in depicting functional activation patterns en route to a basic understanding of the dynamic processes underlying various neuroimaging signals. The novel results, from various species, provide a new understanding of dynamics of neural activity that span a wide spatiotemporal range. Numerous cutting-edge applications are used as examples to illustrate enticing possibilities of combining techniques toward studies of normal function and disease. Exclusive examples of dynamic functional imaging of the cerebral cortex, olfactory bulb, and retina are used to demonstrate the effectiveness of each method for applications to the neurosciences. State-of-the-art techniques described include multi-photon optical imaging, multi-array electrical recordings, heteronuclear magnetic resonance spectroscopy and functional magnetic resonance imaging. Up-to-date and user-friendly, Dynamic Brain Imaging: Multi-Modal Methods and In Vivo Applications is designed to be accessible to both specialist neurophysiologists and general neuroscientists. It reviews the fundamental, theoretical, and practical principles of magnetic resonance, electrophysiology, and optical methods as applied in the neurosciences and shows how these tools can be used
This book provides an overview of the current state-of-art in combining advances in biomedical imaging with intraoperative navigation and preoperative planning for urologic surgery. These advances hold great promise in improving diagnostic and therapeutic urologic interventions to improve patient outcomes. Leading experts in this exciting emerging field covers early clinical and pre-clinical applications of optical, ultrasound, cross-sectional and computer-assisted imaging in urologic surgery. "Advances in Image-Guided Urologic Surgery" provides a unique and valuable resource for audience with clinical and research interest in minimally invasive surgery, endourology, urologic oncology, imaging and biomedical engineering.
Biomedical image analysis has become a major aspect of engineering sciences, and radiology in particular has become a dominant player in the field. Recent developments have made it possible to use biomedical imaging to view the human body from an anatomical or physiological perspective in a non-invasive fashion. Computer-aided diagnosis consists of developing algorithms and intelligent software components that can automatically process images and spot potential irregularities in the health chain. The aim of this book is to explain the process of biomedical imaging, from image acquisition to automated diagnosis. This process consists of three thematic areas. The first is dedicated to the acquisition process and the underlying properties of images from a physics-oriented perspective. The second part addresses the dominant state-of-the-art methodologies behind content extraction and interpretation of medical images. The third section presents an application-based example, which develops solutions to address the particular needs of various diagnoses. This complete volume is an exceptional tool for radiologists, research scientists, senior undergraduate and graduate students in health sciences and engineering, and university professors. This book offers a unique guide to the entire chain of biomedical imaging, explaining how image formation is done, and how the most appropriate algorithms are used to address demands and diagnoses.
This third edition is a simulator for your clinical mind and exclusively designed to give you the final edge over intense competition. The book is a compilation of all the possible clinical scenarios which have been asked in various examinations and may be repeated in the future. This book provides a comprehensive and easy-to-grasp insight into the world of image-based questions. The new pattern of examination has loads of image-based MCQs, creating an unpredictable atmosphere and doubts in even the best of brains. This compilation is dedicated to all those young inquisitive minds, who have endured all the long study hours, feeling of despair and finally, relief when the results are out.
In Vivo EPR (ESR) is a textbook on this relatively new subject in
biomedical electron spin resonance. While a few chapters have
appeared in special topics volumes in this series, this book covers
the principles and theory, instrumentation as well as the latest
applications at the time of its writing. The authors are
world-renowned experts and pioneers in their fields. This book is
divided into two major sections dealing with theory and
instrumentation, and aspects of biochemistry, in vitro and in vivo
applications. A significant amount of detail is devoted to clinical
applications and the problems and pitfalls encountered in in vivo
spectroscopy and imaging. -History of In Vivo EPR,
Image synthesis across and within medical imaging modalities is an active area of research with broad applications in radiology and radiation oncology. This book covers the principles and methods of medical image synthesis, along with state-of-the-art research. First, various traditional non-learning-based, traditional machine-learning-based, and recent deep-learning-based medical image synthesis methods are reviewed. Second, specific applications of different inter- and intra-modality image synthesis tasks and of synthetic image-aided segmentation and registration are introduced and summarized, listing and highlighting the proposed methods, study designs, and reported performances with the related clinical applications of representative studies. Third, the clinical usages of medical image synthesis, such as treatment planning and image-guided adaptive radiotherapy, are discussed. Last, the limitations and current challenges of various medical synthesis applications are explored, along with future trends and potential solutions to solve these difficulties. The benefits of medical image synthesis have sparked growing interest in a number of advanced clinical applications, such as magnetic resonance imaging (MRI)-only radiation therapy treatment planning and positron emission tomography (PET)/MRI scanning. This book will be a comprehensive and exciting resource for undergraduates, graduates, researchers, and practitioners.
This book presents a thorough review of coronary angioscopy, ranging from instructions on its use to the latest advances. Starting with the structure and fundamental principles of angioscopy, it shows readers how to apply the image to comprehensive care of coronary-artery patients. Plentiful color photos and illustrations will enable readers to investigate and classify plaques and thrombi and to evaluate coronary stent- and drug-based therapies. The authors are leading researchers on angioscopy. This book offers the perfect guide not only for new clinicians but also for cardiologists who have already adopted this technique for medical examination and treatment. Angioscopy is a unique medical technique for visualizing the interior of blood vessels and helps physicians not only to diagnose the pathology but also to measure the effectiveness of Percutaneous coronary intervention (PCI) or antiarteriosclerotic drugs. Furthermore, the recently developed molecular angioscopy approach allows us to observe Low-density lipoprotein (LDL) oxide, collagen, and macrophages, and is rapidly growing in importance.
Cell Imaging is rapidly evolving as new technologies and new imaging advances continue to be introduced. In the second edition of Cell Imaging Techniques: Methods and Protocols expands upon the previous editions with current techniques that includes confocal microscopy, transmission electron microscopy, atomic force microscopy, and laser microdissection. With new chapters covering colocalization analysis of fluorescent probes, correlative light and electron microscopy, environmental scanning electron microscopy, light sheet microscopy, intravital microscopy, high throughput microscopy, and stereological techniques. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls Authoritative and cutting-edge, Cell Imaging Techniques: Methods and Protocols, Second Edition is an easily accessible volume of protocols to be used with a variety of imaging-based equipment likely available in a core imaging facility.
Part of the Clinico Radiological Series, this book provides a multidisciplinary overview of diagnostic imaging for chest infections. Divided into six sections, the text begins with a general overview of imaging techniques and chest infections. The following sections discuss imaging of different causes of chest infection - causative organisms, such as bacterial pneumonia and fungal infections; clinical scenarios such as hospital-acquired pneumonia and infections following surgery. The final section provides reporting templates and questions and answers to assist learning. The text is further enhanced by nearly 1300 clinical photographs, diagrams and tables, as well as numerous illustrative case scenarios. Other titles in the Clinico Radiological Series include Temporal Bone Imaging (9789385891908), Imaging of Interstitial Lung Diseases (9789386322517) and Sinonasal Imaging (9789352701711). Key points Multidisciplinary guide to diagnostic imaging for chest infections Part of the Clinico Radiological Series Includes nearly 1300 images, diagrams and tables as well as case scenarios Features reporting templates and questions and answers for revision
Medical imaging is an important topic which is generally recognised as key to better diagnosis and patient care. It has experienced an explosive growth over the last few years due to imaging modalities such as X-rays, computed tomography (CT), magnetic resonance (MR) imaging, and ultrasound.This book focuses primarily on state-of-the-art model-based segmentation techniques which are applied to cardiac, brain, breast and microscopic cancer cell imaging. It includes contributions from authors based in both industry and academia and presents a host of new material including algorithms for:- brain segmentation applied to MR;- neuro-application using MR; - parametric and geometric deformable models for brain segmentation;- left ventricle segmentation and analysis using least squares and constrained least squares models for cardiac X-rays; - left ventricle analysis in echocardioangiograms;- breast lesion detection in digital mammograms;detection of cells in cell images.As an overview of the latest techniques, this book will be of particular interest to students and researchers in medical engineering, image processing, computer graphics, mathematical modelling and data analysis. It will also be of interest to researchers in the fields of mammography, cardiology, pathology and neurology.
Drug development today needs to balance agility, speed, and risk in defining probability of success for molecules, mechanisms, and therapeutic concepts. New techniques such as fMRI promise to be part of a sequence that could transform drug development. Although numerous review articles exist that discuss the use of imaging in drug development, no one source is available that combines the various techniques and includes a discussion of disease mapping. Imaging in CNS Drug Discovery and Development, Implications for Disease and Therapy will serve to distill the most salient developments in the use of imaging in drug development and disease mapping. It will launch evolving concepts that integrate new imaging technologies and paradigms with molecular medicine and molecular profiling ("monics") as well as consider the ethical issues that arise as a result of disease or state diagnosis and the use of imaging in the public eye.
This volume builds on the success of the first edition of Imaging Pelvic Floor Disorders and is aimed at those practitioners with an interest in the imaging, diagnosis and treatment of pelvic floor dysfunction. Concise textual information from acknowledged experts is complemented by high-quality diagrams and images to provide a thorough update of this rapidly evolving field. Introductory chapters fully elucidate the anatomical basis underlying disorders of the pelvic floor. State of the art imaging techniques and their application in pelvic floor dysfunction are then discussed in detail. Additions since the first edition include consideration of the effect of aging and new chapters on perineal ultrasound, functional MRI and MRI of the levator muscles. The closing sections of the book describe the modern clinical management of pelvic floor dysfunction, including prolapse, urinary and faecal incontinence and constipation, with specific emphasis on the integration of diagnostic and treatment algorithms. Written for: Practitioners and clinicians in the fields radiology, urology, proctology/colorectal surgery, gynecology, gastroenterology
The Basic Bookshelf for Eyecare Professionals is a series that provides fundamental and advanced material with a clinical approach to clinicians and students. A special effort was made to include information needed for the certification exams in ophthalmic and optometric assisting, low vision, surgical assisting, opticianry, and contact lens examiners. This concise, easy-to-read manual is an excellent introduction to the fundamental techniques of film based imaging of the eye. With a back-to-basics approach this text will reduce any fear or anxiety that you may have related to learning the craft of ocular photography. Clinical Ocular Photography is organized in a way that allows quick and easy understanding on a specific subject. Each chapter stands alone, allowing the reader to tackle one specific topic at a time. With clear explanations of all clinical uses of photography in ophthalmology, this book is the perfect resource for the beginning or experienced ocular photographer.
Positron emission tomography (PET) has been at the forefront of fu- tional and molecular imaging for a number of years. The future of di- nostic imaging depends upon the ability to change from imaging anatomy to examining the processes at work in the body. The fact that there are now monographs examining particular aspects of PET, such as this book on the examination of children, speaks to the newly won maturity of PET. The authors are to be congratulated for the timely appearance of this volume. In recent years, PET has transformed the contributions of nuclear medicine to the diagnosis, staging, and follow-up of patients with cancer. Children with cancer deserve the very best and most comp- sionate care that society can provide. Ultimately the greatest comp- sion we can offer as physicians is to provide the best possible care. Those charged with creating public policy in the context of diagnostic medicine must make common cause with physicians and other sci- tists to ensure that that best possible care is realized at the bedside. All of the evidence suggests that PET is central to such optimal cancer care. In addition to the distinguished cast of physicians and researchers who contributed to this book, I welcome the contributions from te- nologists who are a key part of the interaction between the diagnostic process and the sick or potentially sick child. Good care is contingent upon putting parents and child at ease, and the technologist has a lead role in this.
This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.
This book, featuring more than 180 high spatial resolution images obtained with state-of-the-art MDCT and MRI scanners, depicts in superb detail the anatomy of the temporal bone, recognized to be one of the most complex anatomic areas. In order to facilitate identification of individual anatomic structures, the images are presented in the same way in which they emanate from contemporary imaging modalities, namely as consecutive submillimeter sections in standardized slice orientations, with all anatomic landmarks labeled. While various previous publications have addressed the topic of temporal bone anatomy, none has presented complete isotropic submillimeter 3D volume datasets of MDCT or MRI examinations. The Temporal Bone MDCT and MRI Anatomy offers radiologists, head and neck surgeons, neurosurgeons, and anatomists a comprehensive guide to temporal bone sectional anatomy that resembles as closely as possible the way in which it is now routinely reviewed, i.e., on the screens of diagnostic workstations or picture archiving and communication systems (PACS). |
You may like...
Emerging Technologies in Healthcare
Matthew N.O Sadiku, Rotimi A K Jaiyesimi, …
Hardcover
R1,372
Discovery Miles 13 720
Wearable Sensors Applied in Movement…
Fabien Buisseret, Frederic Dierick, …
Hardcover
Love Radiology - Central Nervous System
Hariqbal Singh, Mahesh Gautam, …
Hardcover
R944
Discovery Miles 9 440
|