![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Medical imaging > General
Images in Urology is a unique book that integrates images of urological conditions within their clinical context. Improvements in imaging techniques have meant greater diagnostic power and a dramatic rise in the number and quality of images obtained and viewed by practicing clinicians. None more so than in the field of urology, where static and dynamic images are fundamental to the diagnosis and treatment of almost all conditions. This book presents images of radiological and radionucleotide scans, macroscopic and microscopic histopathology specimens, urodynamic traces and photographs of dermatological conditions relating to urology. Each section has a series of questions, often relating to a clinical scenario, about the images. A comprehensive answer provides a description of each image and of the condition shown. Details of how to interpret the image and the use of contrast or staining methods to help differentiate normal anatomy from pathology are included. Images in Urology is an essential tool for urology, radiology and histopathology trainees and consultants, as well as being an excellent exam preparation guide.
Computer-aided design (CAD) plays a key role in improving biomedical systems for various applications. It also helps in the detection, identification, predication, analysis, and classification of diseases, in the management of chronic conditions, and in the delivery of health services. This book discusses the uses of CAD to solve real-world problems and challenges in biomedical systems with the help of appropriate case studies and research simulation results. Aiming to overcome the gap between CAD and biomedical science, it describes behaviors, concepts, fundamentals, principles, case studies, and future directions for research, including the automatic identification of related disorders using CAD. Features: Proposes CAD for the study of biomedical signals to understand physiology and to improve healthcare systems' ability to diagnose and identify health disorders. Presents concepts of CAD for biomedical modalities in different disorders. Discusses design and simulation examples, issues, and challenges. Illustrates bio-potential signals and their appropriate use in studying different disorders. Includes case studies, practical examples, and research directions. Computer-Aided Design and Diagnosis Methods for Biometrical Applications is aimed at researchers, graduate students in biomedical engineering, image processing, biomedical technology, medical imaging, and health informatics.
"This book presents the technology evaluation methodology from the point of view of radiological physics and contrasts the purely physical evaluation of image quality with the determination of diagnostic outcome through the study of observer performance. The reader is taken through the arguments with concrete examples illustrated by code in R, an open source statistical language." - from the Foreword by Prof. Harold L. Kundel, Department of Radiology, Perelman School of Medicine, University of Pennsylvania "This book will benefit individuals interested in observer performance evaluations in diagnostic medical imaging and provide additional insights to those that have worked in the field for many years." - Prof. Gary T. Barnes, Department of Radiology, University of Alabama at Birmingham This book provides a complete introductory overview of this growing field and its applications in medical imaging, utilizing worked examples and exercises to demystify statistics for readers of any background. It includes a tutorial on the use of the open source, widely used R software, as well as basic statistical background, before addressing localization tasks common in medical imaging. The coverage includes a discussion of study design basics and the use of the techniques in imaging system optimization, memory effects in clinical interpretations, predictions of clinical task performance, alternatives to ROC analysis, and non-medical applications. Dev P. Chakraborty, PhD, is a clinical diagnostic imaging physicist, certified by the American Board of Radiology in Diagnostic Radiological Physics and Medical Nuclear Physics. He has held faculty positions at the University of Alabama at Birmingham, University of Pennsylvania, and most recently at the University of Pittsburgh.
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
Reflecting recent major advances in the field of artificial intelligence, Developing the Digital Lung, From First Lung CT to Clinical AI, by Dr. John Newell, is your go-to reference for all aspects of applied artificial intelligence in lung disease development, including application to clinical medicine. It provides a unique overview of the field, beginning with a review of the origins of artificial intelligence in the mid-1970s and progressing to its application to clinical medicine in the early 2020s. Organized based on the four stages of development, this practical, easy-to-use resource helps you effectively apply artificial intelligences to lung imaging. Traces the development of precise quantitative CT of diffuse lung disease through the use of applied AI, leading to faster effective diagnosis of patients with lung disease. Reviews CT manufacturers, models and scanning protocol used to produce the 3D digital maps of the lungs. Discusses how the data processed by AI algorithms can produce measures of emphysema, air trapping, and airway wall thickening in subjects with COPD and measures of pulmonary fibrosis and traction bronchiectasis in idiopathic pulmonary fibrosis (IPF). Demonstrates the differences between reactive machine AI and limited memory AI methods. Includes comprehensive case studies and current information on cloud computing. An eBook version is included with purchase. The eBook allows you to access all of the text, figures and references, with the ability to search, customize your content, make notes and highlights, and have content read aloud.
In view of better results expected from examination of medical datasets (images) with hybrid (integration of thresholding and segmentation) image processing methods, this work focuses on implementation of possible hybrid image examination techniques for medical images. It describes various image thresholding and segmentation methods which are essential for the development of such a hybrid processing tool. Further, this book presents the essential details, such as test image preparation, implementation of a chosen thresholding operation, evaluation of threshold image, and implementation of segmentation procedure and its evaluation, supported by pertinent case studies. Aimed at researchers/graduate students in the medical image processing domain, image processing, and computer engineering, this book: Provides broad background on various image thresholding and segmentation techniques Discusses information on various assessment metrics and the confusion matrix Proposes integration of the thresholding technique with the bio-inspired algorithms Explores case studies including MRI, CT, dermoscopy, and ultrasound images Includes separate chapters on machine learning and deep learning for medical image processing
The aim of this book is to outline the concept of entropy, various types of entropies and their implementation to evaluate a variety of biomedical signals/images. The book emphasizes various entropy-based image pre-processing methods which are essential for the development of suitable computerized examination systems. The recent research works on biomedical signal evaluation confirms that signal analysis provides vital information regarding the physiological condition of the patient, and the efficient evaluation of these signals can help to diagnose the nature and the severity of the disease. This book emphasizes various entropy-based image pre-processing methods which are essential for the development of suitable computerized examination systems for the analysis of biomedical images recorded with a variety of modalities. The work discusses the image pro-processing methods with the Entropies, such as Kapur, Tsallis, Shannon and Fuzzy on a class of RGB-scaled and gray-scaled medical pictures. The performance of the proposed technique is justified with the help of suitable case studies, which involves x-ray image analysis, MRI analysis and CT analysis. This book is intended for medical signal/image analysts, undergraduate and postgraduate students, researchers, and medical scientists interested in biomedical data evaluation.
This issue of Neuroimaging Clinics of North America focuses on Magnetoencephalography (MEG), and is edited by Drs. Roland Lee and Mingxiong Huang. Articles will include: MEG signal processing, forward modeling, MEG inverse source imaging, and Coherence analysis; Magnetoencephalography for pre-surgical functional mapping; Magnetoencephalography for mild TBI and PTSD; Magnetoencephalography for autism; Magnetoencephalography for schizophrenia; Magnetoencephalography for Alzheimer's disease; Pediatric Magnetoencephalography; The MEG Measurement Techniques; MEG and Language/Linguistics; MEG for Epilepsy; Integration of MEG results into the patient workup - Merging multiple modalities; and more!
Sensor technologies and applications are evolving rapidly driven by the demand for new sensors for monitoring and diagnostic purposes to enable improvements in human health and safety. Simultaneously, sensors are required to consume less power, be autonomous, cost less, and be connected by the Internet of Things. New sensor technologies are being developed to fulfill these needs. This book reviews the latest developments in sensor technology and gives the reader an overview of the state-of-the-art in key areas, such as sensors for diagnostics and monitoring. Features Provides an overview of sensor technologies for monitoring and diagnostics applications. Presents state-of-the-art developments in selected topics for sensors that can be used for monitoring and diagnostics in future healthcare, structural monitoring, and smart environment applications. Features contributions from leading international experts in both industry and academia. Explores application areas that include medical diagnostics and screening, health monitoring, smart textiles, and structural monitoring.
Gamma cameras are traditionally large devices that are situated in nuclear medicine departments, but recent advances in detector design have enabled the production of compact gamma cameras that allow nuclear imaging at the patient bedside and in the operating theatre. Gamma Cameras for Interventional and Intraoperative Imaging is the first book to cover this new area of imaging, and provides a unique insight into the experimental and clinical use of small field of view gamma cameras in hospitals. This book explores advances in the design and operation of compact gamma cameras and conducts a thorough review of current SFOV systems, before exploring the clinical applications of the technology. It is an essential reference for surgeons, operating theatre staff, clinical scientists (medical physicists), technologists, nuclear physicians and radiologists whose patients could benefit from this technology.
This timely overview of dose, benefit, and risk in medical imaging explains to readers how to apply this information for informed decision-making that improves patient outcomes. The chapters cover patient and physician perspectives, referral guidelines, appropriateness criteria, and quantifying medical imaging benefits. The authors have included essential discussion about radiologic physics in medical imaging, fundamentals of dose and image quality, risk assessment, and techniques for optimization and dose reduction. The book highlights practical implementation aspects with useful case studies and checklists for treatment planning. Clinicians, students, residents, and professionals in medical physics, biomedical engineering, radiology, oncology, and allied disciplines will find this book an essential resource with the following key features: Discusses risk, benefit, dose optimization, safety, regulation, radiological protection, and shared & informed decision-making. Covers regulatory oversight by government agencies, manufacturers, and societies. Highlights best practices for improving patient safety and outcomes. Gives guidelines on doses associated with specific procedures.
This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as physics of x-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
For every physician that interprets ECGs, there is great need to understand a vast amount of information regarding the technique. That the basics of the technique have changed little over the last 100 years means that there is a huge amount of subtle detail that must be learnt to enable its effective use as a diagnostic test. The ECG technique is critical for deciding upon further diagnostic procedures and therapeutic interventions (notably coronary angiography, PTCA, stenting, coronary artery bypass grafting, pacemaker insertion, ablation, electroconversion etc). Without attaining the skills to practice the ECG procedure and knowledge of its diagnostic value - skills often overlooked during medical training - physicians will be unlikely to use it to the benefit of their patients.
The only case-based guide to electromyography-back in a fully revised and updated New Edition! This practical resource examines how to approach, diagnose, and manage the most commonly encoun-tered disorders in the EMG laboratory. Based on actual cases, it correlates patient history, physical exam, EMG findings, relevant anatomy, treatment, and follow-up to help readers sharpen their clinical problem-solving skills. New cases have been added, and every case includes the latest advances in knowledge and technique. Features study questions, answers, and clinical discussions of how experts manage cases to help readers work through the problems presented. Summarizes the results of nerve conduction studies and EMG data with standardized tables. Includes more than 200 relevant imaging studies and anatomic figures. Makes information easy to find with a uniform chapter organization. Offers a consistent approach to electromyography based on Dr. Katirji's broad knowledge and clinical experience. 7 new case studies, including Hereditary Neuropathy with Liability to Pressure Palsy, Ischemic Monomelic Neuropathy, and Myotonic Dystrophy. Three new chapters on Nerve Conduction Studies, Needle EMG Examination, and Specialized Procedures. Many new and revised figures that clarify complex information.
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.
Research into the 3D Physiological Human is a very active field focusing on the creation of patient-specific computer models for personalised healthcare. Reporting on how these models can simulate and provide a better understanding of human physiology and pathology, this book also looks at how the evolution and the improvement of technological devices such as scanners, medical instruments, and computer power have helped in our understanding of the human body and its functionalities. The book contains contributions from leading researchers from a variety of disciplines (including computer graphics, biomechanics, knowledge representation, human-machine interfaces etc) associated with medical imaging, simulation, computer-assisted surgery and 3D semantics. Divided into three parts: anatomical and physiological modelling, physically-based simulation, and medical analysis and knowledge management, this book provides a clear picture of the most recent advances in this increasingly important area.
This issue of PET Clinics focuses on FDG-PET/CT Imaging in Infectious and Inflammatory Disorders, and is edited by Drs. Soren Hess and Lars Gormsen. Articles will include: Patient preparation and patient related challenges in infectious/inflammatory disease; Systemic infections (Fever/bacteremia of unknown origin, immunocompromised patients); Infections in bone and prosthetic joints; The infected heart; Inflammatory bowel disease; Pulmonary inflammatory diseases (sarcoidosis including cardiac and COPD); Infection and inflammation imaging: Beyond FDG; Polymyalgia rheumatica; Low grade inflammation; Large vessel vasculitis; Tuberculosis; and more!
Authored by a leading educator, this book teaches the fundamental mathematics and physics concepts associated with medical imaging systems. Going beyond mere description of imaging modalities, this book delves into the mechanisms of image formation and image quality common to all imaging systems: contrast mechanisms, noise, and spatial and temporal resolution, making it an important reference for medical physicists and biomedical engineering students. This is an extensively revised new edition of The Physics of Medical X-Ray Imaging by Bruce Hasegawa (Medical Physics Publishing, 1991), and includes a wide range of modalities such as X-ray CT, MRI and SPECT.
Neuromuscular imaging has increasingly become an important tool in the detection and diagnosis of inherited and acquired neuromuscular disease. This book is a groundbreaking radiological and neurological overview of current methods and applications of imaging-including aspects of neuroimaging and musculoskeletal imaging-in patients with inherited, metabolic, and inflammatory muscle diseases. Imaging features are discussed in the context of clincial presentation, histopathology, therapeutic options and differential diagnosis. World leading expert contributors give a comprehensive and didactic review of neuromuscular disorders and available imaging modalities, each illustrated with numerous figures. Topics discussed include: -Modalities such as ultrasound, CT and MRI -Muscle anatomy and physiology -Clinical applications in hereditary and acquired myopathies -Clinical applications in motor neuron disorders and peripheral nerve imaging
Advances have been made in improved signal and image interpolation that derive a unified framework, thus achieving improvement of the approximation properties of the interpolation function regardless of its dimensionality or degree. Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI) presents a novel approach for the improvement of the approximation characteristics of interpolation functions. A unique and original resource, this book approaches both the theory and methodology absent from most publications of its kind, a valuable inclusion for those interested in exploring the innovative approach that this reference proposes.
Goals of the Book Overthelast thirty yearsthere has been arevolutionindiagnostic radiology as a result oftheemergenceofcomputerized tomography (CT), which is the process of obtaining the density distribution within the human body from multiple x-ray projections. Since an enormous variety of possible density values may occur in the body, a large number of projections are necessary to ensure the accurate reconstruction oftheir distribution. There are other situations in which we desire to reconstruct an object from its projections, but in which we know that the object to be recon structed has only a small number of possible values. For example, a large fraction of objects scanned in industrial CT (for the purpose of nonde structive testing or reverse engineering) are made of a single material and so the ideal reconstruction should contain only two values: zero for air and the value associated with the material composing the object. Similar as sumptions may even be made for some specific medical applications; for example, in angiography ofthe heart chambers the value is either zero (in dicating the absence of dye) or the value associated with the dye in the chamber. Another example arises in the electron microscopy of biological macromolecules, where we may assume that the object to be reconstructed is composed of ice, protein, and RNA. One can also apply electron mi croscopy to determine the presenceor absence ofatoms in crystallinestruc tures, which is again a two-valued situation."
This book provides structured up-to-date information on all routine protocols used for multislice (multidetector row) CT. The volume contains a detailed technical section and covers the prevailing investigations of the brain, neck, lungs and chest, abdomen with parenchymal organs and gastrointestinal tract, the musculoskeletal system and CTA as well as dedicated protocols for the heart. Separate chapters address the how-to of CT-guided interventions such as punctures, drainages, and therapeutic approaches. Each protocol is displayed en bloc, enabling rapid appreciation of indications and the necessary scanner settings. The second edition includes contributions by renowned experts in the field, who not only provide their clinical experience on each topic, but also give guidelines for indications, workflow, postprocessing and reconstruction algorithms.
Divided roughly into two sections, this book provides a brief history of the development of ECG along with heart rate variability (HRV) algorithms and the engineering innovations over the last decade in this area. It reviews clinical research, presents an overview of the clinical field, and the importance of heart rate variability in diagnosis. The book then discusses the use of particular ECG and HRV algorithms in the context of clinical applications.
Understand Quantitative Radiobiology from a Radiation Biophysics Perspective In the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses. Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer Treatments The book compiles radiation mechanism information from biophysical publications of the past 50 years, addressing how ionizing radiation produces the killing of stem cells in human tumors. It presents several physical and chemical parameters that can modulate the radiation response of clonogenic cells in tumors. The authors describe the use of the LQ model in basic radiation mechanism studies with cells of relatively homogeneous radiation response and then extend the model to the fitting of survival data generated with heterogeneous cell populations (tumors). They briefly discuss how to use the LQ model for predicting tumor (local) control probability (TCP) and normal tissue complication probability (NTCP). The book also examines potential molecular targets related to alpha- and beta-inactivation and gives suggestions for further molecular characterizations of these two independent processes. Develop Efficacious, Patient-Friendly Treatments at Reduced Costs Focusing on quantitative radiobiology in LQ formulation, this book assists medical physicists and radiation oncologists in identifying improved cancer treatments. It also encourages investigators to translate potentially improved radiotherapy schedules based on TCP and NTCP modeling into actual patient benefit. |
You may like...
Carbon-based Polymer Nanocomposites for…
Ahmad Fauzi Ismail, Pei Sean Goh
Paperback
Environmentally Sustainable Corrosion…
Chaudhery Mustansar Hussain, Chandrabhan Verma, …
Paperback
R4,480
Discovery Miles 44 800
The Biodiesel Handbook, Second Edition
Gerhard Knothe, Jon Van Gerpen
Paperback
R3,085
Discovery Miles 30 850
Green Sustainable Process for Chemical…
Dr. Inamuddin, Tariq Altalhi
Paperback
R4,557
Discovery Miles 45 570
Multi Tenancy for Cloud-Based In-Memory…
Jan Schaffner
Hardcover
The Road to Comedy - The Films of Bob…
Donald McCaffrey
Hardcover
|