![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Medical imaging > General
The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.
This book presents a thorough review of coronary angioscopy, ranging from instructions on its use to the latest advances. Starting with the structure and fundamental principles of angioscopy, it shows readers how to apply the image to comprehensive care of coronary-artery patients. Plentiful color photos and illustrations will enable readers to investigate and classify plaques and thrombi and to evaluate coronary stent- and drug-based therapies. The authors are leading researchers on angioscopy. This book offers the perfect guide not only for new clinicians but also for cardiologists who have already adopted this technique for medical examination and treatment. Angioscopy is a unique medical technique for visualizing the interior of blood vessels and helps physicians not only to diagnose the pathology but also to measure the effectiveness of Percutaneous coronary intervention (PCI) or antiarteriosclerotic drugs. Furthermore, the recently developed molecular angioscopy approach allows us to observe Low-density lipoprotein (LDL) oxide, collagen, and macrophages, and is rapidly growing in importance.
Cell Imaging is rapidly evolving as new technologies and new imaging advances continue to be introduced. In the second edition of Cell Imaging Techniques: Methods and Protocols expands upon the previous editions with current techniques that includes confocal microscopy, transmission electron microscopy, atomic force microscopy, and laser microdissection. With new chapters covering colocalization analysis of fluorescent probes, correlative light and electron microscopy, environmental scanning electron microscopy, light sheet microscopy, intravital microscopy, high throughput microscopy, and stereological techniques. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls Authoritative and cutting-edge, Cell Imaging Techniques: Methods and Protocols, Second Edition is an easily accessible volume of protocols to be used with a variety of imaging-based equipment likely available in a core imaging facility.
It is now widely recognised that biological psychiatry is rapidly
coming into its own. For over the last three decades dramatic
advances in this young discipline have been made, all of which
attest to the staying power of the experimental method. Those who
made this revolution in knowledge happen are a breed of
investigators availing themselves of the tools of molecular
biology, pharmacology, genetics, and perhaps, above all, the
technology of neuroimaging. The introduction of the
interdisciplinary method of approach to the study of
psychopathology had made it very clear that neuroimaging, as a set
of techniques, is unique in that it is gradually providing us with
evidence supporting Kraepelin's original view that mental illness
is closely associated with abnormal changes in the brain.
Drug development today needs to balance agility, speed, and risk in defining probability of success for molecules, mechanisms, and therapeutic concepts. New techniques such as fMRI promise to be part of a sequence that could transform drug development. Although numerous review articles exist that discuss the use of imaging in drug development, no one source is available that combines the various techniques and includes a discussion of disease mapping. Imaging in CNS Drug Discovery and Development, Implications for Disease and Therapy will serve to distill the most salient developments in the use of imaging in drug development and disease mapping. It will launch evolving concepts that integrate new imaging technologies and paradigms with molecular medicine and molecular profiling ("monics") as well as consider the ethical issues that arise as a result of disease or state diagnosis and the use of imaging in the public eye.
Neuroimaging in Neurogenic Communication Disorders provides a comprehensive review of cases utilizing neuroimaging in neurogenic communication disorders. Basic knowledge of neuroanatomy and medical conditions related to these speech and language disorders are discussed. Each case study includes information on neuroanatomy, case presentation, neuroimaging, differential diagnosis, and final diagnosis. This book is written for medical students, practitioners and researchers in neuroscience and speech language pathology. Neurogenic communication disorders are caused by damage to the central or peripheral nervous system. This damage can be caused by Parkinson's disease, stroke, dementia, traumatic brain injury, brain tumors, and other neurologic disorders and causes issues such as aphasia, dysarthria and apraxia.
This volume builds on the success of the first edition of Imaging Pelvic Floor Disorders and is aimed at those practitioners with an interest in the imaging, diagnosis and treatment of pelvic floor dysfunction. Concise textual information from acknowledged experts is complemented by high-quality diagrams and images to provide a thorough update of this rapidly evolving field. Introductory chapters fully elucidate the anatomical basis underlying disorders of the pelvic floor. State of the art imaging techniques and their application in pelvic floor dysfunction are then discussed in detail. Additions since the first edition include consideration of the effect of aging and new chapters on perineal ultrasound, functional MRI and MRI of the levator muscles. The closing sections of the book describe the modern clinical management of pelvic floor dysfunction, including prolapse, urinary and faecal incontinence and constipation, with specific emphasis on the integration of diagnostic and treatment algorithms. Written for: Practitioners and clinicians in the fields radiology, urology, proctology/colorectal surgery, gynecology, gastroenterology
This comprehensive reference illustrates optimal preparation
methods in biological electron microscopy compared with common
methodological problems. Not only will the basic methodologies of
transmission electron microscopy like fixation, microtomy, and
microscopy be presented, but the authors also endeavor to
illustrate more specialized techniques such as negative staining,
autoradiography, cytochemistry, immunoelectron microscopy, and
computer-assisted image analysis.
Positron emission tomography (PET) has been at the forefront of fu- tional and molecular imaging for a number of years. The future of di- nostic imaging depends upon the ability to change from imaging anatomy to examining the processes at work in the body. The fact that there are now monographs examining particular aspects of PET, such as this book on the examination of children, speaks to the newly won maturity of PET. The authors are to be congratulated for the timely appearance of this volume. In recent years, PET has transformed the contributions of nuclear medicine to the diagnosis, staging, and follow-up of patients with cancer. Children with cancer deserve the very best and most comp- sionate care that society can provide. Ultimately the greatest comp- sion we can offer as physicians is to provide the best possible care. Those charged with creating public policy in the context of diagnostic medicine must make common cause with physicians and other sci- tists to ensure that that best possible care is realized at the bedside. All of the evidence suggests that PET is central to such optimal cancer care. In addition to the distinguished cast of physicians and researchers who contributed to this book, I welcome the contributions from te- nologists who are a key part of the interaction between the diagnostic process and the sick or potentially sick child. Good care is contingent upon putting parents and child at ease, and the technologist has a lead role in this.
This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.
Medical Image Databases covers the new technologies of biomedical imaging databases and their applications in clinical services, education, and research. Authors were selected because they are doing cutting-edge basic or technology work in relevant areas. This was done to infuse each chapter with ideas from people actively investigating and developing medical image databases rather than simply review the existing literature. The authors have analyzed the literature and have expanded on their own research. They have also addressed several common threads within their generic topics. These include system architecture, standards, information retrieval, data modeling, image visualizations, query languages, telematics, data mining, and decision supports. The new ideas and results reported in this volume suggest new and better ways to develop imaging databases and possibly lead us to the next information infrastructure in biomedicine. Medical Image Databases is suitable as a textbook for a graduate-level course on biomedical imaging or medical image databases, and as a reference for researchers and practitioners in industry.
This book, featuring more than 180 high spatial resolution images obtained with state-of-the-art MDCT and MRI scanners, depicts in superb detail the anatomy of the temporal bone, recognized to be one of the most complex anatomic areas. In order to facilitate identification of individual anatomic structures, the images are presented in the same way in which they emanate from contemporary imaging modalities, namely as consecutive submillimeter sections in standardized slice orientations, with all anatomic landmarks labeled. While various previous publications have addressed the topic of temporal bone anatomy, none has presented complete isotropic submillimeter 3D volume datasets of MDCT or MRI examinations. The Temporal Bone MDCT and MRI Anatomy offers radiologists, head and neck surgeons, neurosurgeons, and anatomists a comprehensive guide to temporal bone sectional anatomy that resembles as closely as possible the way in which it is now routinely reviewed, i.e., on the screens of diagnostic workstations or picture archiving and communication systems (PACS).
This volume contains the papers presented at the 14th International Conference on Information Processing in Medical Imaging. IPMI meetings have a a strong emphasis on the clinical relevance and validation of medical imaging. This book covers the whole spectrum: acquisition, tomographic reconstruction, registration, segmentation, knowledge-based analysis, display and image quality as well as several important applications. Several papers present significant advances in topics already discussed at previous meetings while others deal with new topics and methodology, opening new horizons in medical imaging. In addition to the 28 full-length papers, 30 short communications are included to sample the most current work in progress. Audience: An up-to-date and complete overview of ongoing research in medical imaging, beneficial to all physicists, computer scientists and physicians who wish to remain informed on state-of-the-art methodology in medical imaging.
This comprehensive book focuses on multimodality imaging technology, including overviews of the instruments and methods followed by practical case studies that highlight use in the detection and treatment of cardiovascular diseases. Chapters cover PET-CT, SPECT-CT, SPECT-MRI, PET-MRI, PET-optical imaging, SPECT-optical imaging, photoacoustic Imaging, and hybrid intravascular imaging. It also addresses the important issues of multimodality imaging probes and image quantification. Readers from radiology and cardiology as well as medical imaging and biomedical engineering will learn essentials of the field. They will be shown how the field has advanced quantitative analysis of molecularly targeted imaging through improvements in the reliability and reproducibility of imaging data. Moreover, they will be presented with quantification algorithms and case illustrations, including coverage of such topics such as multimodality image fusion and kinetic modeling. Yi-Hwa Liu, PhD is Senior Research Scientist in Cardiovascular Medicine at Yale University School of Medicine and Technical Director of Nuclear Cardiology at Yale New Haven Hospital. He is also an Associate Professor (Adjunct) of Biomedical Imaging and Radiological Sciences at National Yang-Ming University, Taipei, Taiwan, and Professor (Adjunct) of Biomedical Engineering at Chung Yuan Christian University, Taoyuan, Taiwan. He is an elected senior member of Institute of Electrical and Electronic Engineers (IEEE) and a full member of Sigma Xi of The Scientific Research Society of North America. Albert J. Sinusas, M.D., FACC, FAHA is Professor of Medicine (Section of Cardiovascular Medicine) and Radiology and Biomedical Imaging, at Yale University School of Medicine, and Director of the Yale Translational Research Imaging Center (Y-TRIC), and Director of Advanced Cardiovascular Imaging at Yale New Haven Hospital. He is a recipient of the Society of Nuclear Medicine's Hermann Blumgart Award.
Medical imaging has been transformed over the past 30 years by the advent of computerized tomography (CT), magnetic resonance imaging (MRI), and various advances in x-ray and ultrasonic techniques. An enabling force behind this progress has been the (so far) exponentially increasing power of computers, which has made it practical to explore fundamentally new approaches. In particular, what our group terms "model-based" modalities-which produce tissue property images from data using nonlinear, iterative numerical modeling techniques-have become increasingly feasible. Alternative Breast Imaging: Four Model-Based Approaches explores our research on four such modalities, particularly with regard to imaging of the breast: (1) MR elastography (MRE), (2) electrical impedance spectroscopy (EIS), (3) microwave imaging spectroscopy (MIS), and (4) near infrared spectroscopic imaging (NIS). Chapter 1 introduces the present state of breast imaging and discusses how our alternative modalities can contribute to the field. Chapter 2 looks at the computational common ground shared by all four modalities. Chapters 2 through 10 are devoted to the four modalities, with each modality being discussed first in a theory chapter and then in an implementation-and-results chapter. The eleventh and final chapter discusses statistical methods for image analysis in the context of these four alternative imaging modalities. Imaging for the detection of breast cancer is a particularly interesting and relevant application of the four imaging modalities discussed in this book. Breast cancer is an extremely common health problem for women; the National Cancer Institute estimates that one in eight US women will develop breast cancer at least once in her lifetime. Yet the efficacy of the standard (and notoriously uncomfortable) early-detection test, the x-ray mammogram, has been disputed of late, especially for younger women. Conditions are thus ripe for the development of affordable techniques that replace or complement mammography. The breast is both anatomically accessible and small enough that the computing power required to model it, is affordable.
Market: Engineers and researchers in neural networks, image processing, audio/speech, and medical imaging. This book begins by focusing on the theoretical aspect of pattern recognition and introduces an integrated pattern recognition paradigm, which combines preprocessing, low dimensional signal characterization, feature optimization, and mapping classifier architecture to good features in a seamless fashion. Later, the authors reinforce the concepts of pattern recognition and prediction with challenging real- world examples, encompassing financial market prediction, image coding, active and passive sonar processing, chaos modeling, and intelligent product design.
The last two decades have seen prodigious growth in the application of brain imaging methods to questions of substance abuse and addiction. Despite considerable advances in our understanding of the central effects of drugs provided by preclinical data, relatively little direct evidence was known of how substances of abuse affect the brain and other eNS processes in humans. Brain imaging techniques have allowed access to the human brain and enabled the asking of questions never before imagined. The positron emission tomography (PET) data ofVolkow and her colleagues in the late 1980s, showing the uptake and time course of cocaine's binding in the human brain, revealed for the first time the distinct sites of action of this drug. This work was extremely important because it showed clearly, through imaging a drug in the brain of a living human, that the time course of its action paralleled the behavioral state of "high. " This study marked a turning point in our understanding of drug-brain-behav ior interactions in humans. Many more investigations of drug effects on the structure and function of the human brain were soon to follow, leading to much better insights into brain systems. Brain imaging allowed for the direct assessment of structural and functional anatomy, biology, and chemistry in substance abusers.
This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.
With the increasing interest in the experimental and clinical application of molecular imaging many institutions create research groups or interdisciplinary centers focussing on the complex development process of this new methodology. The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is beeing addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation.
The most salient feature of the infor last four chapters of the book evaluate the mation provided by nuclear medicine is its information from an analytical and pathophysiological and functional charac statistical point of view. This approach is ter. For adequate experimental or clinical required for correct decision-making. interpretation, such information should This book is therefore the result of necessarily be interpreted alongside the accumulated experience in nuclear cardiology views of the clinical cardiologist, who is with the invaluable cooperation of medical able to apply it to the individual patient. statisticians. It is directed to physicians This approach, which is routine in every with an interest in nuclear cardiology, to day clinical practice, reaches its plenitude nuclear medicine specialists wishing to when the whole process is completed and learn the uses and limitations of these an intimate cooperation is established procedures in everyday clinical cardiology, between the nuclear medicine specialist and to cardiologists who feel the need to and the clinical cardiologist. In such understand the rationale and methodology instances, each one of these professionals of the studies which benefit their patients. understands the needs, limits and possi We understand that the ultimate reason bilities of the other. for any scientific book is the transmission The present book is the fruit of such of knowledge, and we are fully conscious cooperation. In our hospital, an efficient of the enthusiasm of the authors of the nuclear cardiology team has been made up present text to achieve that aim.
For more than a century, microscopy has been a centerpiece of extraordinary discoveries in biology. Along the way, remarkable imaging tools have been developed allowing scientists to dissect the complexity of cellular processes at the nano length molecular scales. Nanoimaging: Methods and Protocols presents a diverse collection of microscopy techniques and methodologies that provides guidance to successfully image cellular molecular complexes at nanometer spatial resolution. The book's four parts cover: (1) light microscopy techniques with a special emphasis on methods that go beyond the classic diffraction-limited imaging; (2) electron microscopy techniques for high-resolution imaging of molecules, cells and tissues, in both two and three dimensions; (3) scanning probe microscopy techniques for imaging and probing macromolecular complexes and membrane surface topography; and (4) complementary techniques on correlative microscopy, soft x-ray tomography and secondary ion mass spectrometry imaging. Written in the successful format of the Methods in Molecular Biology (TM) series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Nanoimaging: Methods and Protocols highlights many of the most exciting possibilities in microscopy for the investigation of biological structures at the nano length molecular scales.
The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications, Magnetic resonance and MPJ in hospital, Digital imaging with X-rays, Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and storage, readout electronics, modelling and computer algorithms for imaging and measurement in ultrasounds and tomography applications. |
![]() ![]() You may like...
A Patient's Guide to Medical Imaging
Ronald Eisenberg, JD, MD, FACR, Alexander Margulis, MD
Hardcover
R1,282
Discovery Miles 12 820
Wearable Sensors Applied in Movement…
Fabien Buisseret, Frederic Dierick, …
Hardcover
|