![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > General
This book provides a comprehensive overview on the recent significant advancements of conductive polymers and their composites in terms of conductive mechanism, fabrication strategies, important properties, and various promising applications. The corresponding knowledge was systematically compiled in the logical order and demonstrated as seven chapters. The special structure, influencing factors of the conductivity, the charge carrier transport model, the wettability and classical categories of the conductive polymers are narrated. Both conventional and novel strategies undertaken to fabricate the conductive polymers are introduced, as provided the overall master of the progress. In comparison with the bulk counterpart, nanostructured conductive polymers with different dimensions such as nanospheres, nano-networks, nanotubes and nanowire arrays are produced through distinct methods, thus presenting unique and distinct performance endowed by the nanometer scale. The combination of conductive polymers with other functional materials results in a number of the composites with improved properties by synergistic effect. The superior performance of conductive polymers and their composites greatly facilitates their development toward various important applications in the advanced and sophisticated fields such as biological utilization, energy storage and sensors. Due to their excellent biocompatibility, conductive polymers and their composites stand out to be useful in the biological field including tissue engineering, drug delivery and artificial muscle. To meet the urgent demand of the energy storage, conductive polymers and their composites play an important role in the devices including supercapacitors, solar cells and fuel cells. Finally, development of conductive polymers and their composites in the modern industry is greatly enhanced by their applications in smart sensors such as conductometric sensors, gravimetric sensors, optical sensors, chemical sensors and biosensors. This book has significant value for researchers, graduate students, and engineers carrying out the fundamental research or industrial production of conductive polymers and their composites.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.Chapters "Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing", "Luminescent Metal Complexes as Emerging Tools for Lipid Imaging" and "Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors" are available open access under a CC BY 4.0 License via link.springer.com.
This book informs about knowledge gain in soil and land degradation to reduce or prevent it for meeting the mission of the Sustainable Developments Goals of the United Nations. Essence, extent, monitoring methods and implications for ecosystem functioning of main soil degradation types are characterized in overview chapters and case studies. Challenges, approaches and data towards identification of degradation in the frame of improving functionality, health and multiple ecosystem services of soil are demonstrated in the studies of international expert teams. The book consists of five parts, containing 5-12 single chapters each and 36 in total. Parts are explaining (I) Concepts and Indicators, (II) Soil Erosion and Compaction, (III) Soil Contamination, (IV) Soil Carbon and Fertility Monitoring and (V) Soil Survey and Mapping of Degradation The primary audience of this book are scientists of different disciplines, decision-makers, farmers and further informed people dealing with sustainable management of soil and land.
This book offers a clearly written and highly accessible account of two different aspects of carbohydrate chemistry. Carbohydrates are an essential component of life and have many important biological functions, but the details of how carbohydrates interact with other biomolecules to mediate biological signalling remain unclear. Firstly, this thesis details innovative methods to mine protein structural data to uncover new features of carbohydrate-based interactions. It also explains these findings using physical chemistry, specifically CH-pi interactions associated with the properties of the interacting partners. Carbohydrates are also critical for tissue growth and development, yet are underexploited in the materials science that underpins much of regenerative medicine. As such, the second part of this thesis describes a diverse array of techniques ranging from synthetic chemistry and enzymatic synthesis to prepare a wide variety of carbohydrates, and materials chemistry to prepare glycosylated hydrogels, to cell biology to determine the effects on cellular development for tissue engineering applications.
Lasers are relatively recent additions to the analytical scientist's arsenal. Because of this, many analysts-whether their concern is research or some range of applications-are in need of a tutorial introduction not only to the principles of lasers, their optics, and radiation, but also to their already diverse and burgeoning applications. The artic1es presented in this volume, carefully enhanced and edited from lectures prepared for the ACS Division of Analytical Chemistry 1979 Summer Symposium, are designed to provide just such a broad introduction to the subject. Thus, in addition to several excellent chapters on laser fundamentals, there are many practically oriented artic1es dealing with laser analytical methodology, inc1uding techniques based on the absorption oflaser radiation, on laser-induced fluorescence, and on some of the uses of lasers in chemical instru mentation. The first of these sections is pivotal and reflects in part our philosophy in organizing this collection. The authors of the initial chapters were invited not only because of their expertise in the field of lasers and analytical chemistry, but also because their didactic approach to writing and their c1arity of presentation were well known to us. It is our hope that individual readers with little knowledge of lasers will gain from these introductory chapters sufficient information to render the later, more detailed artic1es both useful and meaningful."
Written for practitioners in both the drug and biotechnology industries, this handbook carefully compiles current regulatory requirements on the validation of new or modified analytical methods. Shedding light on method validation from a practical standpoint, it contains practical, up-to-date guidelines for analytical method validation. It also covers development, optimization, validation, and transfer of many different types of methods used in the regulatory environment. Simplifying the overall process of method development, optimization and validation, the guidelines in the Handbook apply to both small molecules in the conventional pharmaceutical industry, as well as the biotech industry.
Reviews in Fluorescence 2015, the eighth volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Reviews in Fluorescence offers an essential reference material for any research lab or company working in the fluorescence field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of fluorescence will find it an invaluable resource.
The book aims to the description of recent progress in studies of light absorption and scattering in turbid media. In particular, light scattering/oceanic optics/snow optics research community will greatly benefit from the publication of this book.
An introduction and tutorial on electron paramagnetic spectroscopy Bringing a classic text up to date after three decades of popularity, "Electron Paramagnetic Resonance: Elementary Theory and Practical Applications," Second Edition provides a basic understanding of the underlying theory, fundamentals, and applications of electron paramagnetic spectroscopy (EPR). Choosing to develop a sound base of knowledge rather than comprehensive coverage, the authors cover the basics along with: Exciting new developments and current trends and techniques Updated information on high-frequency and multi-frequency EPR Pulsed microwave techniques and spectra analysis Dynamic effects Relaxation phenomena Computer-based spectra simulation Biomedical aspects of EPR The application of EPR techniques to problem solving in such areas as organic, inorganic, biological, and analytical chemistry; chemical physics; geophysics; and mineralogy Written to serve as both a self-study guide for professionals and a textbook for students, this "Second Edition" will equip readers with the foundation necessary to apply EPR to their own specialized fields of interest.
Detection canines have been utilized throughout the world for over a century, and while numerous attempts have been made to replicate the canine's ability to detect substances by mechanical means, none has been as successful. The olfactory system is a highly intricate and sophisticated design for chemical sensing, and the olfactory capacity of many animals, including canines, is considered unmatched by machine due to not only their great sensitivity and superior selectivity but also their trainability and mobility. These unique features have led to the use of such animals as "whole-animal" biosensors. Amplifying the benefits and diminishing the limitations of detection canines' interdisciplinary research is crucial to understanding canine olfaction and detection and enhancing this powerful and complex detector. The past 50 years have produced vast advancements in animal behavior/training technology to develop canines into more proficient and reliable sensors, while scientific research has provided tremendous support to help practitioners better understand how to utilize this powerful sensor. This book assembles a diverse group of authors with expertise in a variety of fields relating to detection canines and the chemical sensing industry, including both research and operational perspectives on detection canines. It illustrates how science enhances our understanding of how canines are employed for solving some of the world's leading detection challenges.
This book presents the meaning of green infrastructure and its concerns to the contribution of materials and applications. It explores the evolving contested material under "green infrastructure" covering timber, concrete, soil, and pavement. It discusses the resistance to the ambiguity of managing the construction of green infrastructure and drawing on wider debates around applications and processes on construction. These contributions are by no means definitive, but rather an attempt to provide a detached and holistic perspective on the engineering "green infrastructure" concept.
This contributed volume reviews the latest advances in all the new technologies currently developed for MagnetoEncephaloGraphy (MEG) recordings, as well as sensor technologies and integrated sensor arrays for on-scalp MEG. The book gives an account of the first MEG imaging studies and explores the new field of feasible, experimental paradigms of on-scalp MEG. This is an ideal book for engineers, researchers, and students in the neurosciences interested in MEG imaging.
The collection focuses on the advancements of characterization of minerals, metals, and materials and the applications of characterization results on the processing of these materials. Advanced characterization methods, techniques, and new instruments are emphasized. Areas of interest include, but are not limited to: * Novel methods and techniques for characterizing materials across a spectrum of systems and processes. * Characterization of mechanical, thermal, electrical, optical, dielectric, magnetic, physical, and other properties of materials. * Characterization of structural, morphological, and topographical natures of materials at micro- and nano- scales. * Characterization of extraction and processing including process development and analysis. * Advances in instrument developments for microstructure analysis and performance evaluation of materials, such as computer tomography (CT), X-ray and neutron diffraction, electron microscopy (SEM, FIB, TEM), and spectroscopy (EDS, WDS, EBSD) techniques. * 2D and 3D modelling for materials characterization. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
This bookshows how to enhance somebamboopropertiesandthesurface treatmentsforobtaininghigh strength nanocomposites. It describes the tensile, flexural and impact strength, surface behaviour, morphological analysis, infrared spectral functional analysis and thermal properties analysis of manufacture nanocomposites. It also investigates the optimization of fabrication techniquesto prepare bamboo nanocomposites reinforcedwithvarious polymers. The book alsodescribesenvironmental impact analysis of bamboo nanocomposites. This book concludes with the nano-enhancement on bamboo species to produce nanocomposites and possibleusage of nanocomposites materials in terms of sustainability and economics.
This thesis represents a breakthrough in our understanding of the noise processes in Microwave Kinetic Inductance Detectors (MKIDs). While the detection of ultraviolet to near-infrared light is useful for a variety of applications from dark matter searches to biological imaging and astronomy, the performance of these detectors often limits the achievable science. The author's work explains the limits on spectral resolution broadening, and uses this knowledge to more than double the world record spectral resolution for an MKID suitable for optical and near-IR astrophysics, with emphasis on developing detectors for exoplanet detection. The techniques developed have implication for phonon control in many different devices, particularly in limiting cosmic ray-induced decoherence in superconducting qubits. In addition, this thesis is highly accessible, with a thorough, pedagogical approach that will benefit generations of students in this area.
This handbook presents a compilation of plant histopathology laboratory practices and microscopy techniques for study plant tissues under biotic stress. It will serve as an easy-to-reference material for professors, undergraduate and graduate students and researchers from different areas who work with the interaction between plants and pathogens, whether they are fungi, viruses or bacteria. Besides, it will also help unveil the structural, ultrastructural and histochemical changes induced by plants when challenged by plant pathogens.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
Covering both theory and applications, this important work provides a comprehensive introduction to the modern theory of X-ray and electronic spectra of free atoms. Romas Karazija discusses methods of angular momenta, irreducible tensorial operators, and coefficients of fractional parentage and their use in determining cross sections and probabilities of elementary processes. In addition, Karazija addresses the structure of electronic shells with inner vacancies and many-body effects.
This book focuses on the characterization of the amorphous phase of polymers, whether they are pure amorphous or semi-crystalline ones, above Tg or below Tg, by studying the relaxation of dipoles and space charges naturally found in their structure after they have been activated by the application of a voltage field. The experimental deconvolution of the relaxation modes responsible for internal motion in the amorphous phase is coupled with a mathematical procedure (Thermal-Windowing Deconvolution-TWD) that leads to the understanding of their coupling characteristics which, it is shown, relate to the state of the material itself, for instance its non-equilibrium state or its internal stress for matter belonging to interfaces between aggregated or dispersed phases. Describes quantitatively the Thermal Stimulated Depolarization techniques of polymer characterization (TSD, TWD), i.e. how to decouple the relaxation modes collectively interacting (interactive coupling) and relate it to the thermodynamic properties of the amorphous phase. Understands the results of depolarization in terms of the new physics of polymer interactions: the Dual-Phase model, here applied to the dipoles-space charge dynamics. Provides a roaster of CASE STUDIES: practical applications of the TSD and TWD characterization techniques to describe coupled molecular motions in resins, medical tissues, wood, blends and block copolymers interfaces, rubbers, can coatings, internal stress in molded parts, etc
Analytical techniques are powerful tools in a chemist's armoury. Spectroscopic data and chemical information are used routinely in laboratories to follow a chemical reaction or elucidate a chemical structure. However, the sophistication of the analytical techniques used changes rapidly, hence the routinely used method of today can all too readily be superseded by the new technology of tomorrow. More Modern Chemical Techniques identifies some applications of the important chemical techniques in use today that are less well known in schools and colleges and which illustrate how chemistry is using state-of-the-art technology to push back the frontiers of the subject. Examples include: elemental analysis such as atomic absorption spectrometry and inductively coupled plasma techniques; separations including electrophoresis, structure determination (eg x-ray diffraction and optical microscopy); and sampling and sample preparation.
This book provides a comprehensive overview of the current knowledge on the fate and interaction of pharmaceuticals in soil-crop systems. It addresses the principles of their transport, uptake and metabolism and reviews methodologies for their analytical determination. It also discusses ecotoxicological effects arising from their presence and highlights bioremediation approaches for their removal. The use of treated wastewater to irrigate crops is becoming more widespread in regions where freshwater is limited. This practice conserves freshwater resources and contributes to nutrient recycling. However, concerns remain regarding the safety of irrigation with treated wastewater since it contains residues of pharmaceuticals that have survived treatment, which means that soil and fauna are potentially exposed to these xenobiotics. Various pathways govern the fate of pharmaceuticals in crop-soil systems, including soil degradation; formation of non-extractable residues; uptake by soil-dwelling organisms (e.g. earthworms); and uptake, transport, and metabolism in agricultural crops. Investigations into these aspects have only recently been initiated, and there is still a long way to go before a meaningful assessment of the impact of wastewater has been completed.
This book addresses the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge-based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding water and environment. This book gathers scholar and experts in related fields. All attendees from a vast range of companies, universities and government institutions acquire advanced technical knowledge and are introduced to new fields through discussions that focus on their own specialties as well as a variety of interdisciplinary areas. The authors hope most of scholars can find what they really need in this book.
This book offers a comprehensive overview of recent studies conducted on the biological effects of metal nanoparticles. It also provides a solid theoretical foundation and various metal nanoparticle synthesis methods. Part I reviews the main chemical methods used for synthesizing metal nanoparticles in a solution and describes original method of biochemical synthesis, as well as some special procedures developed specifically for studying the biological activity of nanoparticles. Part II analyzes current literature on the effects of metal nanoparticles observed in microorganisms and addresses the influence of silver nanoparticles obtained by biochemical synthesis on biological objects on various organization levels, namely on microorganisms, acellular slim mold, unicellular alga, plant seeds and mammalian cells. The last section explains the central problems common in studies on the biological effects of metal nanoparticles and outlines potential uses of this trend in bio-nanotechnologies. This book is aimed at specialists, professors and students aspiring to expand their knowledge about the biological activities of metal nanoparticles and nanoparticle-containing materials. |
You may like...
Alteration of Ovoproducts - From…
Olivier Goncalves, Jack Legrand
Hardcover
R3,937
Discovery Miles 39 370
Analysis of Marine Samples in Search of…
Teresa Rocha-Santos, Armando C. Duarte
Hardcover
Remediation of Hazardous Waste in the…
Clayton J. Clark, Angela Stephenson Lindner
Hardcover
R5,104
Discovery Miles 51 040
Applications of Advanced Omics…
Virginia Garcia-Canas, Alejandro Cifuentes, …
Hardcover
Prof. of Drug Substances, Excipients and…
Abdulrahman Al-Majed
Hardcover
R5,239
Discovery Miles 52 390
Wearable Physical, Chemical and…
Eden Morales-Narvaez, Can Dincer
Paperback
R3,981
Discovery Miles 39 810
The Handbook of Metabolic Phenotyping
John C. Lindon, Jeremy K. Nicholson, …
Paperback
R4,944
Discovery Miles 49 440
Metal Chalcogenide Biosensors…
Ali Salehabadi, Morteza Enhessari, …
Paperback
R3,696
Discovery Miles 36 960
Handbook of Thermal Analysis and…
Sergey Vyazovkin, Nobuyoshi Koga, …
Paperback
|