![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > General
Electrochemical processes are long known but are becoming increasingly important again, due to modern applications, such as electro-mobility or energy storage. Thus, electrochemistry is not only a topic for chemists and physicists, but also for technical engineers. This book addresses all aspects of electrochemistry, which are important in these days: electrodes, corrosion, interphases, processes, energy storage, analytical methods, and sensors.
Today more than 5 million chemicals are known and roughly 100,000 of them are frequently used, with both numbers rising. Many of these chemicals are ultimately released into the environment and may cause adverse effects to ecosystems and human health. Effect-directed analysis (EDA) is a promising tool for identifying predominant toxicants in complex, mostly environmental mixtures combining effect testing, fractionation and chemical analysis. In the present book leading experts in the field provide an overview of relevant approaches and tools used in EDA. This includes diagnostic biological tools, separation techniques and advanced analytical and computer tools for toxicant identification and structure elucidation. Examples of the successful application of EDA are discussed such as the identification of mutagens in airborne particles and sediments, of endocrine disruptors in aquatic ecosystems and of major toxicants in pulp and paper mill effluents. This book is a valuable, comprehensive and interdisciplinary source of information for environmental scientists and environmental agencies dealing with the analysis, monitoring and assessment of environmental contamination.
This book discusses the decoding of the lytic mechanism of an -helical pore-forming toxin, YaxAB, composed of two different subunits. Pore-forming toxins (PFTs) are among the most common bacterial toxins. They are produced by a variety of pathogens, which infect a wide range of organisms including plants, insects and humans. Yet the maturation of these particles and the structural changes required for pore formation are still poorly understood for many PFT families. Using a diverse panel of biochemical and structural techniques, including X-ray crystallography and cryo-electron microscopy, Dr. Brauning and colleagues have succeeded in identifying the mechanistic contributions of the two toxin components and elucidating the lytic state of the pore complex. The results of this thesis on the YaxAB system are applicable to orthologues from agriculturally relevant insect pathogens, and offer valuable structural and mechanistic insights to inform future bioengineering efforts.
This book describes in a comprehensive manner latest studies conducted by various research groups worldwide focusing on carbon and related nanomaterials. Fourteen chapters of this book deal with a number of key research topics and applications of pure and functionalized carbon nanomaterials and their hybrid nanocomposites. Specifically, the authors have presented interdisciplinary investigations including: (i) carbon nanoparticles and layers synthesis, (ii) analytical aspects of carbon nanomaterials and their characterisation under different conditions as well as (iii) various applications of carbon nanoparticles. They have reported and summarised key applications of carbon particles or nanoobjects in pharmacy, biomedicine, agriculture and food industry, water treatment, physicochemical analysis, optoelectronics, electronic and magnetic materials for supercapacitors or radar adsorbing materials, tribology, chromatography, electrophoresis, bioanalysis, nanobiocatalysis, biofuels production as well as environmental remediation.
The invention of scanning tunneling microscopy (STM) in 1981 [1] and later atomicforcemicroscopy(AFM)in1986[2]facilitatedbreakthroughsinvarious disciplinesofsciencesuchaschemistry,physicsandbiology,andtrulyboosted the development of nanoscience and nanotechnology. These two techniques made it possible to achieve a detailed understa- ing of chemical and biological systems as well as phenomena across multiple lengthscales, and in particular downto thesub-nanometer scale. In fact STM and AFM are not simply microscopy tools, but they are also extremely useful techniques tochemistand biochemists. Forexample AFMandSTMoffers- theticchemiststhechancetoobservethemoleculestheyhavesynthesized,how theymoveand dance onasurface,howtheyrecognizeand communicate with each other, thus making it possible to cast new light onto the molecular int- actions[3]. Alongsidetheircapabilityofgeneratingartisticthree-dimensional pictures with nanoscale resolution, they also allowed the study of molecular based architectures beyond imaging, providing quantitative insight into va- ous physico-chemical properties [4] For instance, by manipulating molecules individually it is possible to bestow information onto their mechanical pr- erties andtoperformconstructionsonthenanoscale. In thelastfewyears the application of AFM and STM to study molecular systems in various envir- ments (e. g. , liquid, gas, vacuum) is paving the way towards the unraveling of complex characteristics and phenomena of nanostructured (bio)systems. Inthisvolumewehaveselected afewofthemostrelevantexamplesofAFM and STM based experiments on (bio)molecular based systems, which offer not only a close look into the nanoworld but also provide quantitative insight into various properties of molecular and polymeric systems, and ultimately highlight some technologicallyrelevant applications. I was delighted and felt privileged to work with an outstanding group of contributingauthors:Itrulythankthemforalltheirefforts. Iamalsograteful to Dr. Marion Hertel and Birgit Kollmar-Thoni for their invitation to edit this volume and for their assistance.
Comprising 12 chapters, this book focuses on volatile methylsiloxanes (VMSs), the shorter-chained organosiloxanes, and reviews the main areas and environmental compartments where they have been found and studied. It opens with a detailed description of the structural and functional properties, toxic risks and possible transformations of VMSs in the environment and their main uses in various activities and products, as well as the identification of the main sources of emission. Further chapters examine the analytical strategies and protocols that have been used to address the quantification of VMSs, including the issue of possible cross-contaminations. The book also discusses the presence of VMSs in wastewater treatment plants (WWTPs) and in water bodies, their atmospheric fate and levels in biota, as well as occurrences of VMSs in remote areas of the world. It closes with a comprehensive conclusion and discussion on future directions for upcoming studies. This book is not intended as a finishing line, but rather as an important step towards improving our understanding of VMSs, to fuel new collaborations between research groups and/or with industry and lastly to convince more researchers to explore the mysteries of these ubiquitous, yet understudied, chemicals.
R.N.IBBETT This book provides a source of information on all major aspects of NMR spectroscopy of synthetic polymers. It represents a deliberate attempt to pull together the numerous strands of the subject in a single comprehensive volume, designed to be readable at every scientific level. It is intended that the book will be of use to the vast majority of polymer scientists and NMR spec troscopists alike. Readers new to NMR will find extensive information within the book on the available techniques, allowing full exploration of the many polymer science applications. Readers already established within a branch of NMR will find the book an excellent guide to the practical study of polymers and the inter pretation of experimental data. Readers who have specialised in polymer NMR will find the book a valuable dictionary of proven methodologies, as well as a guide to the very latest developments in the subject. Workers from all of the main branches of polymer NMR have been invited to contribute. Each chapter therefore contains information relating to a parti cular investigative topic, indentified mainly on the basis of technique. The book is loosely divided between solution and solid-state domains, although the numerous interconnections confirm that these two domains are parts of the same continuum. Basic principles are explained within each chapter, combined with discussions of experimental theory and applications. Examples of polymer investigations are covered generously and in many chapters there are discussions of the most recent theoretical and experimental developments."
Describes the basics of analytical techniques, sampling and data handling in order to improve quality control in analytical laboratory management. Stresses what quality parameters can be improved and which ones should be rectified first. This edition includes numerous modern methods and the latest developments in time-proven techniques.
Chemometric Techniques for Quantitative Analysis shows how to produce and use quantitative analytical calibrations in a laboratory or production environment following a variety of methods, how to estimate the time and resources needed to develop analytical calibrations, and how to employ the quantitative software provided with a wide range of instruments and commercial software packages. Among several, this bestselling volume covers basic and classical approaches, component regression; PCR in action; partial least squares; PLS in action. An extensive appendix offers a glossary, a list of errors and tests for reduced Eigenvalues.
Recent regulations on heavy metal testing have required the pharmaceutical industry to monitor a suite of elemental impurities in pharmaceutical raw materials, drug products and dietary supplements. These new directives s are described in the new United States Pharmacopeia (USP) Chapters <232>, <233>, and <2232>, together with Q3D, Step 4 guidelines for elemental impurities, drafted by the ICH (International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use), a consortium of global pharmaceutical associations, including the European Pharmacopeia (Ph.Eur.), the Japanese Pharmacopeia (JP) and the USP. This book provides a complete guide to the analytical methodology, instrumental techniques and sample preparation procedures used for measuring elemental impurities in pharmaceutical and nutraceutical materials. It offers readers the tools to better understand plasma spectrochemistry to optimize detection capability for the full suite of elemental PDE (Permitted Daily Exposure) levels in the various drug delivery categories. Other relevant information covered in the book includes: The complete guide to measuring elemental impurities in pharmaceutical and nutraceutical materials. Covers heavy metals testing in the pharmaceutical industry from an historical perspective. Gives an overview of current USP Chapters <232> <233> and <2232> and ICH Q3D Step 4 Guidelines. Explains the purpose of validation protocols used in Chapter <233>, including how J-values are calculated Describes fundamental principles and practical capabilities of ICP-MS and ICP-OES. Offers guidelines about the optimum strategy for risk assessment Provides tips on how best to prepare and present your data for regulatory inspection. An indispensable resource, the fundamental principles and practical benefits of ICP-OES and ICP-MS are covered in a reader-friendly format that a novice, who is carrying out elemental impurities testing in the pharmaceutical and nutraceutical communities, will find easy to understand.
This book compiles research findings directly related to sustainable and economic waste management and resource recovery. Mining wastes and municipal, urban, domestic, industrial and agricultural wastes and effluents-which contain persistent organic contaminants, nanoparticle organic chemicals, nutrients, energy, organic materials, heavy metal, rare earth elements, iron, steel, bauxite, coal and other valuable materials-are significantly responsible for environmental contamination. These low-tenor raw materials, if recycled, can significantly address the demand-supply chain mismatch and process sustainability as a whole while simultaneously decreasing their impacts on human life and biodiversity. This book summarises the large volume of current research in the realm of waste management and resource recovery, which has led to innovation and commercialisation of sustainable and economic waste management for improved environmental safety and improved economics. Key Features: Reviews the key research findings related to sustainable and economic resource recovery and waste management techniques Discusses minimizing waste materials and environmental contaminants with a focus on recovering valuable resources from wastes Examines the potential uses of mining waste in the re-extraction of metals, provision of fuel for power plants, and as a supply of other valuable materials for utilisation/processing Presents research on recycling of municipal, urban, domestic, industrial and agricultural wastes and wastewater in the production and recovery of energy, biogas, fertilizers, organic materials and nutrients Outlines topical research interests resulting in patents and inventions for sustainable and economic waste management techniques and environmental safety
Because of unique water properties, humidity affects many living organisms, including humans and materials. Humidity control is important in various fields, from production management to creating a comfortable living environment. The second volume of The Handbook of Humidity Measurement is entirely devoted to the consideration of different types of solid-state devices developed for humidity measurement. This volume discusses the advantages and disadvantages about the capacitive, resistive, gravimetric, hygrometric, field ionization, microwave, Schottky barrier, Kelvin probe, field-effect transistor, solid-state electrochemical, and thermal conductivity-based humidity sensors. Additional features include: Provides a comprehensive analysis of the properties of humidity-sensitive materials, used for the development of such devices. Describes numerous strategies for the fabrication and characterization of humidity sensitive materials and sensing structures used in sensor applications. Explores new approaches proposed for the development of humidity sensors. Considers conventional devices such as phsychometers, gravimetric, mechanical (hair), electrolytic, child mirror hygrometers, etc., which were used for the measurement of humidity for several centuries. Handbook of Humidity Measurement, Volume 2: Electronic and Electrical Humidity Sensors provides valuable information for practicing engineers, measurement experts, laboratory technicians, project managers in industries and national laboratories, as well as university students and professors interested in solutions to humidity measurement tasks as well as in understanding fundamentals of any gas sensor operation and development.
Accurate uranium analysis, and particularly for isotope measurements, is essential in many fields, including environmental studies, geology, hydrogeology, the nuclear industry, health physics, and homeland security. Nevertheless, only a few scientific books are dedicated to uranium in general and analytical chemistry aspects in particular. Analytical Chemistry of Uranium: Environmental, Forensic, Nuclear, and Toxicological Applications covers the fascinating advances in the field of analytical chemistry of uranium. Exploring a broad range of topics, the book focuses on the analytical aspects of industrial processes that involve uranium, its presence in the environment, health and biological implications of exposure to uranium compounds, and nuclear forensics. Topics include: Examples of procedures used to characterize uranium in environmental samples of soil, sediments, vegetation, water, and air Analytical methods used to examine the rigorous specifications of uranium and its compounds deployed in the nuclear fuel cycle Health aspects of exposure to uranium and the bioassays used for exposure assessment Up-to-date analytical techniques used in nuclear forensics for safeguards in support of non-proliferation, including single particle characterization Each chapter includes an overview of the topic and several examples to demonstrate the analytical procedures. This is followed by sample preparation, separation and purification techniques where necessary. The book supplies readers with a solid understanding of the analytical chemistry approach used today for characterizing the different facets of uranium, providing a good starting point for further investigation into this important element.
This book provides a complete coverage of all aspects of the occurrence, toxicity and analysis of toxicants in the aqueous ecosystem. The aqueous ecosystem includes natural waters such as rivers, coastal waters and open seawater. It also includes sedimentary matter present in these waters, creatures (fish, crustacea) and plant life. Chapters dealing with toxicity measurement, control of pollution regulation and toxicity data systematically discuss metals, organometallic compounds and organic compounds. In addition, Chapters 4 and 5 deal with the effects of these types of toxicants in natural waters and water creatures tissues, whilst Chapter 8 deals with the health of such creatures. Contents:
Provides a summary of non-equilibrium glassy and amorphous structures and their macro- and microscopic thermal properties. The book contains a carefully selected works of fourteen internationally recognized scientists involving the advances of the physics and chemistry of the glassy and amorphous states.
Recent Advances in the Science of Cannabis describes progress in a variety of significant areas of cannabis science. This unique book covers topics in cultivation and secondary metabolites, aroma and chemotypes, cannabinoid structures, physiology and pharmacology, as well as the development of unique topical products. State-of-the-art analytical methods and instrumentation are covered, including current developments in mass spectrometry and chromatography, as well as microbial testing. Given the popularity of smoking and vaporizing cannabis, the chemistry of vaping cannabinoid and terpene concentrates is also presented, along with emerging regulatory issues. Key Features: A guide to emerging modern cannabis technology in a dynamic regulatory climate and appealing to both novices and specialists. Building upon pioneering studies of terpene and cannabinoid chemistry, this distinctive volume describes current best practices, technological breakthroughs and historical context. Written by researchers in industry and academia, a greater understanding of the risks of exposure to emissions from vaping or dabbing cannabis concentrates is provided here. A selection of the book content reviewing Thermal Degradation of Cannabinoids and Cannabis Terpenes has been included in "Hot 2021" RSC Advances.
This book covers different omics aspects related to the extracellular matrix (ECM), namely specific omics resources focused on the extracellular matrix (e.g., databases, repositories and atlases), quantitative proteomics applied to specific extracellular matrices (e.g. basement membranes), biological processes such as ECM degradation (degradomics), cell-matrix interactions (adhesomes), signaling pathways, biomarker discovery and diseases, and interactomics (extracellular matrix interaction networks including not only protein-protein but also protein-glycosaminoglycan interactions). The volume also includes recent advances in glycomics and glycobioinformatics applied to proteoglycans and glycosaminoglycans, which are key biological players. The use of omics data to build dynamic models of ECM-regulated biological pathways is addressed, together with the requirement to standardize omic data, which is a prerequisite for the FAIR (Findability, Accessibility, Interoperability, and Reusability) guiding principles for scientific data management. This book will be of great interest to a broad readership from beginners to advanced researchers, who are interested in extracellular matrix omics and will inspire future research topics.
The growth of interest in newly developed porous materials has prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. One might consider this new book as the 4th edition of "Powder Surface Area and Porosity" (Lowell & Shields), but for this new edition we set out to incorporate recent developments in the understanding of fluids in many types of porous materials, not just powders. Based on this, we felt that it would be prudent to change the title to "Characterization of Porous Solids and Powders: Surface Area, Porosity and Density." This book gives a unique overview of principles associated with the characterization of solids with regard to their surface area, pore size, pore volume and density. It covers methods based on gas adsorption (both physi and chemisorption), mercury porosimetry and pycnometry. Not only are the theoretical and experimental basics of these techniques presented in detail but also, in light of the tremendous progress made in recent years in materials science and nanotechnology, the most recent developments are described. In particular, the application of classical theories and methods for pore size analysis are contrasted with the most advanced microscopic theories based on statistical mechanics (e.g. Density Functional Theory and Molecular Simulation). The characterization of heterogeneous catalysts is more prominent than in earlier editions; the sections on mercury porosimetry and particularly chemisorption have been updated and greatly expanded."
This book discusses in detail the analysis and monitoring of the most important analytes in the environmental field. It also reviews the implementation, realization and application of sensor designs mentioned in the first volume of this set, dividing the coverage into global parameters, sensors of organics and sensors of inorganics.
This new book offers research and updates on the chemical process in liquid and solid phases. The collection of topics in this book reflect the diversity of recent advances in chemical processes with a broad perspective that will be useful to scientists as well as graduate students and engineers. The book will help to fill the gap between theory and practice in industry.
Developments in the title field have been greatly motivated by the studies of transactinoid elements; selected experiments and their results are presented for visualization. Primarily, the book is about the physico-chemical basis of the experimental methods and techniques which are or can be used for compounds of all heavy metals; about evaluation of the desorption energies from the original gas-solid chromatography data; and about concepts and approaches which allow to estimate bulk properties of the compounds even from experiments with a few short-lived atoms. The book attempts for the first time critical discussion of the state of art from a coherent point of view to help better understanding. It was written both for the newcomers to the field and experts, its goal is also to stimulate wider use of the advantageous gas phase techniques for common elements.
The idea for putting together a tutorial on zeolites came originally from my co-editor, Eric Derouane, about 5 years ago. I ?rst met Eric in the mid-1980s when he spent 2 years working for Mobil R&D at our then Corporate lab at Princeton, NJ. He was on the senior technical staff with projects in the synthesis and characterization of new materials. At that time, I managed a group at our Paulsboro lab that was responsible for catalyst characterization in support of our catalyst and process development efforts, and also had a substantial group working on new material synthesis. Hence, our interests overlapped considerably and we met regularly. After Eric moved back to Namur (initially), we maintained contact, and in the 1990s, we met a number of times in Europe on projects of joint interest. It was after I retired from ExxonMobil in 2002 that we began to discuss the tutorial concept seriously. Eric had (semi-)retired and lived on the Algarve, the southern coast of Portugal. In January 2003, my wife and I spent 3 weeks outside of Lagos, and I worked parts of most days with Eric on the proposed content of the book. We decided on a comprehensive approach that ultimately amounted to some 20+ chapters covering all of zeolite chemistry and catalysis and gave it the title Zeolite Chemistry and Catalysis: An integrated Approach and Tutorial.
Application of Thermal Analysis to Kinetic Evaluation of Thermal Decomposition (D. Dollimore & M. Reading). Thermometric Titrations and Enthalpimetric Analysis (J. Jordan & J. Stahl). Thermogravimetry (J. Dunn & J. Sharp). The Application of Thermodilatometry to the Study of Ceramics (M. Ish-Shalom). Pyrolysis Techniques (W. Irwin). Application of Thermal Analysis to Problems in Cement Chemistry (J. Bhatty). Subject Index for Volume 13.
Polymer-based smart materials have become attractive in recent years due to the fact that polymers are flexible and provide many advantages compared to inorganic smart materials: they are low cost, they are easy to process, and they exhibit good performance at nano- and microscale levels. This volume focuses on a different class of polymers that are used as smart materials in the areas of biotechnology, medicine, and engineering. The volume aims to answer these questions: How do we distinguish 'smart materials'? and How do they work? The chapters lay the groundwork for assimilation and exploitation of this technological advancement. Four of the key aspects of the approach that the authors have developed throughout this book are highlighted, namely the multidisciplinary exchange of knowledge, exploration of the relationships between multiple scales and their different behaviors, understanding that material properties are dictated at the smallest scale, and, therefore, the recognition that macroscale behavior can be controlled by nanoscale design.
Fundamentals of Analytical Chemistry are usually presented as a sum of chemical and physical foundations, laws, axioms and equations for analytical methods and procedures. In contrast, this book delivers a practice-oriented, general guiding theory valid for all methods and techniques. The metrological foundations included define strictly the figures of merit in order to minimize confusions still appearing in Analytical Chemistry publications today. |
You may like...
Assessing Transformation Products of…
Joerg E. Drewes, Thomas Letzel
Hardcover
R4,835
Discovery Miles 48 350
Data Analysis for Omic Sciences: Methods…
Joaquim Jaumot, Carmen Bedia, …
Hardcover
R6,386
Discovery Miles 63 860
Applications of Advanced Omics…
Virginia Garcia-Canas, Alejandro Cifuentes, …
Hardcover
Authentication of Food and Wine
Susan E. Ebeler, Gary R. Takeoka, …
Hardcover
R3,137
Discovery Miles 31 370
Prof. of Drug Substances, Excipients and…
Abdulrahman Al-Majed
Hardcover
R5,239
Discovery Miles 52 390
Fundamentals of Analytical Chemistry
Stanley Crouch, Douglas Skoog, …
Hardcover
Electrochemistry of Dihydroxybenzene…
Hanieh Ghadimi, Sulaiman Ab Ghani, …
Paperback
R1,227
Discovery Miles 12 270
|