![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > General
Process analytical chemistry (PAC) can be defined as the technology of obtaining quantitative and qualitative information about a chemical process in order to control or optimise its performance. This highly practical book provides an up-to-date introduction to the field with a special emphasis placed on industrial processes. Edited by representatives from one of the world's leading chemical companies and centres of excellence for research into the subject, the book is written by a transatlantic team of authors who provide a global perspective.
Laboratory Experiments in Trace Environmental Quantitative Analysis is a collection of student-tested experiments that introduce important principles that underlie various laboratory techniques in the field of trace environmental organics and inorganics quantitative analysis. It crosses the more traditional academic disciplines of environmental science and analytical chemistry. The text is organized to begin with minimally rigorous session/experiments and increase in rigor as each session/experiment unfolds. Each experiment features learning objectives, expected student outcomes, and suggestions for further study. Additional features include: Students are introduced to the principles and laboratory practice of instrumental analysis (determinative techniques) that are clearly presented. Students are carefully taken through various ways to prepare samples for trace quantitative analysis (sample prep techniques). Safety warnings are listed within each experiment. Students are introduced to all three types of instrument calibration: external, internal and standard addition. Instructors who are responsible for laboratory courses in analytical chemistry with potential application to environmental sample matrices will find this textbook of value. Graduate programs in environmental science and engineering will also greatly benefit from the content.
This book is aimed at description of recent progress in studies of multiple and single light scattering in turbid media. Light scattering and radiative transfer research community will greatly benefit from the publication of this book.
A survey of recent research in the fields of condensed matter physics and chemistry based on novel NMR and ESR techniques. Applications include quantum computing, metal nanoparticles, low dimensional magnets, fullerenes as atomic cages, superconductors, porous media, and laser assisted studies. The book is dedicated to Professor Robert Blinc, on the occasion of his seventieth birthday, in appreciation of his remarkable scientific accomplishments in the NMR of condensed matter.
This book explores the possibility of using micro/nanostructures formed on the doped ice surface as a novel separation platform. In addition, it provides comprehensive information on the nature of freeze-concentrated solutions (FCSs) and the ice/FCS interface, which play important roles in the natural environment and industrial processes alike. The book proposes a novel size-selective separation approach using channels formed on the doped ice surface. The separation is based on the physical interaction of analytes with channel walls, which is controlled by varying the channel width through temperature and dopant concentration changes. It also shows the precise control of the channel width to be in a range of 200 nm-4 m and demonstrates the size-selective separation of microspheres, cells, and DNA. The physicochemical properties of FCSs are measured to reveal the nature of the ice/FCS interface, and the zeta potentials of ice are measured by determining EOF rates in a microchannel fabricated in the ice. The deprotonation at OH dangling bonds and adsorption of ions are also discussed. The viscosities of FCSs confined in micro/nanospaces are evaluated by means of two spectroscopic methods. When an FCS is confined in small spaces surrounded by ice, the viscosity increases compared to that in a bulk solution. Interestingly, this viscosity enhancement occurs even though its size is on the micrometer scale. These parameters are essential to discussing the unique phenomena occurring in FCSs. This book provides an explanation of the scientific processes taking place in FCSs, and reveals the potential that frozen solutions hold as innovative micro/nanofluidic devices and reaction platforms.
Faba bean is a species of flowering plant in the Fabaceae family and the fourth most widely grown winter season legume after pea, chickpea, and lentil. The nutritional profile of faba beans is excellent as they contain an adequate quantity of proteins, carbohydrates, vitamins, minerals and various polyphenols. Faba bean seeds are a rich source of carbohydrates and starch. Because of higher amylose content than cereal starches, legume starches provide distinctive properties such as high gelation temperature, fast retro-gradation, high resistant starch and gel elasticity to food systems. Faba bean has been a beneficial source of protein in food products worldwide for centuries and continues to be highly produced and consumed to this day. Faba bean Chemistry, Properties and Functionality studies the global status and production of faba bean food products plus their agronomy, nutritional value and potential medicinal applications. The agrarian conditions are studied in full, as are postharvest practices. The chemical makeup of faba bean is a major focus, especially in relation to nutrient composition and quality. Chapters in this text focus on anti-nutritional attributes, antioxidants and bioactive compounds plus the effects of processing, storage and cooking on their nutritional value. Starch and its modification, structure, properties and industrial applications are covered, as is protein, genetic improvement and functional product formulation. The text also looks at the future perspectives of this valuable plant and food source. To date, no reference works have exclusively covered faba bean. This book provides a much-needed single source reference point for researchers looking to gain knowledge on this important plant and its use in high protein, health-beneficial food products.
Molecular Logic Gates and Luminescent Sensors Based on Photoinduced Electron Transfer, by A. Prasanna de Silva and S. Uchiyama; Luminescent Chemical Sensing, Biosensing, and Screening Using Upconverting Nanoparticles, by D. E. Achatz, R. Ali, and O. S. Wolfbeis; Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms, by S. Zhu, T. Fischer, W. Wan, A. B. Descalzo, and K. Rurack; Luminescent Chemosensors Based on Silica Nanoparticles, by S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, M. Sgarzi, and N. Zaccheroni; Fluorescence Based Sensor Arrays, by R. Paolesse, D. Monti, F. Dini, and C. Di Natale; Enantioselective Sensing by Luminescence, by A. Accetta, R. Corradini, and R. Marchelli
This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.
This handbook is unique in its comprehensive coverage of the subject and focus on practical applications in diverse fields. It includes methods for sample preparation, the role of certified reference materials, calibration methods and statistical evaluation of the results. Problems concerning inorganic and bioinorganic speciation analysis, as well as special aspects such as trace analysis of noble metals, radionuclides and volatile organic compounds are also discussed. A significant part of the content presents applications of methods and procedures in medicine (metabolomics and therapeutic drug monitoring); pharmacy (the analysis of contaminants in drugs); studies of environmental samples; food samples and forensic analytics - essential examples that will also facilitate problem solving in related areas.
This second edition volume expands on the previous edition with new and updated chapters on the latest developments in the study of yeast within the biotechnology field. The chapters in this book cover topics such as transformation protocols for genetic engineering of Saccaromyces cerevisiae and Komagataella spp.; an overview of selection markers, promoters, and strains used for metabolic engineering of S. cerevisiae, P. pastoris, and Z. bailii; the use of yeast in CRISPR/Cas9 technology; tools to study metabolic pathway in Yarrowia lypolitica; and a discussion on the "universal expression system" that is applied in a broad spectrum of fungal species. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Yeast Metabolic Engineering: Methods and Protocols, Second Edition is a valuable resource for researchers and scientists interested in learning more about this important and developing field.
Fiber sensing technologies have enabled both fundamental studies and a wide spectrum of applications in every aspect of life. This book highlights the recent advancement in fiber sensing technologies based on newly developed sensing mechanisms, advanced fiber structures, and functional materials. In particular, the integration of functional materials with different electrical, optical, thermal, or mechanical properties into a single fiber offers a wealth of new opportunities in sensing. The book covers the major developments in novel fiber materials, such as semiconductors, metals, polymers, soft glasses, and carbon materials, as well as the sensing applications based on both single fiber and multi-dimensional fiber arrays for temperature, light, strain, vibration, electric and magnetic fields, hazardous chemicals, gases, and physiological signals.
This volume provides a wide spectrum of multidisciplinary approaches for studying RNA structure and dynamics, including detailed accounts of experimental and computational procedures. Chapters guide readers through cryo-electron microscopy, crystallography, isothermal titration calorimetry, small angle X-ray scattering, single-molecule Foerster Energy transfer, X-ray free electron laser, atomic force microscopy, computational simulation, and prediction. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, RNA Structure and Dynamics aims to be a foundation for future studies and to be a source of inspiration for new investigations in the field.
Chiral Derivatizing Agents, Macrocycles, Metal Complexes and Liquid Crystals for Enantiomer Differentiation in NMR Spectroscopy: Thomas J. Wenzel. Chiral NMR Solvating Additives for Differentiation of Enantiomers: Gloria Uccello-Barretta and Federica Balzano. Chiral Sensor Devices for Differentiation of Enantiomers: Kyriaki Manoli, Maria Magliulo and Luisa Torsi. Enantiopure supramolecular cages: synthesis and chiral recognition properties: Thierry Brotin, Laure Guy, Alexandre Martinez, Jean-Pierre Dutasta. Interconversion of Stereochemically Labile Enantiomers (Enantiomerization) : Oliver Trapp. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks: A.C. Evans, C. Meinert, J.H. Bredehoeft, C. Giri, N.C. Jones, S.V. Hoffmann, U.J. Meierhenrich. Self-disproportionation of Enantiomers of Enantiomerically Enriched Compounds: Alexander E. Sorochinsky and Vadim A. Soloshonok.
This thesis presents new methods for the characterization of vegetable oils, with focus in olive oil, according to geographical and botanical origin, genetic variety and other issues influencing product quality. A wide variety of analytical techniques have been employed, such as various chromatographic techniques (different gas and liquid chromatography methods), an electronic nose, infrared spectroscopy and expert-panel evaluation. Several families of minor compounds, with interest as adulteration markers, have been used for method development, including tocopherols, sterols, phenolics, alcohols, proteins and others. Most methods have been enhanced by the application of multivariate chemometrics. The proposed analytical techniques are of interest to investigate fraudulent actions and practices which are detrimental to product quality.
A complete restructuring and updating of the classic 1982 Handbook of Chemical Property Estimation Methods (commonly known as "Lyman's Handbook"), the Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences reviews and recommends practical methods for estimating environmentally important properties of organic chemicals. One of the most eagerly anticipated revisions in scientific publishing, the new Handbook includes both a foreword and a chapter by Dr. Lyman.
Electrochemical and Analytical Techniques for Sustainable Corrosion Monitoring presents established research and technology for corrosion monitoring and measurements. Corrosion reduction can be controlled via various ways, including process control, cathodic protection, metal impurity reduction, application of surface treatment methods, and incorporation of appropriate alloys. This is the first book that collectively describes corrosion inhibition measurements using chemical, electrochemical, and analytical methods. The book presents state-of-the art techniques for corrosion monitoring by providing detailed studies and testing methods. It also covers the most advanced, industry-oriented challenges for sustainable corrosion monitoring and measurements. The book is a valuable resource for scholars in academia, materials science and applied engineering and chemistry students, and corrosion engineers.
This work is a comprehensive and much-needed tool for the teaching and practice of radioanalytical chemistry. It encompasses a concise theoretical background, laboratory work, and data interpretation. It also contains chapters on the most current and visible applications of radioanalytical techniques. Its emphasis on the practical aspects on laboratory setup and operation make it a valuable tool for training professionals and students alike.
This volume analyzes both the theoretical and experimental aspects of neutron spectroscopy of solids, whereby complex crystals may be analyzed in relation to the theories of symmetry and neutron scattering near a structural or magnetic transition.
Physico-Chemical Analysis of Molten Electrolytes includes selected
topics on the measurement and evaluation of physico-chemical
properties of molten electrolytes. It describes the features,
properties, and experimental measurement of different
physico-chemical properties of molten salt systems used as
electrolytes for different metal production, metallic layer
deposition, as a medium for reactions in molten salts.
Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information on it Samuel Johnson, 18 April, 1775* Sterols are among the most studied groups of natural products with interest commencing in the 19th century and running to the present. Investigations have embraced the refinement of separation procedures, the development of new analytical techniques and instrumentation for structure elucidation, the unravelling of biosynthetic mechanisms, the determination of the physiological functions of sterols, and the role they play in health and disease. In the past 20-30 years interest in the medical implications of sterol biochemistry, studies on the sterols of plants, algae and fungi, and the identification of the many unusual sterols from marine organisms have proceeded in parallel and somewhat independently. Although the motiva tion and goals for the various lines of investigation have differed widely the researchers working in each of these areas have contributed a wealth of knowledge to the literature relating to the analysis of sterols and many diverse new sterols have been discovered. We conceived this book as a modest attempt to bring together some of this literature in the hope that it may be helpful to newcomers to sterol research. We had originally intended to produce a 'handbook' outlining in detail the protocols to be followed for sterol extraction, chromatography, NMR analysis, etc. in order to identify the components of a sterol mixture."
This book gives a comprehensive overview of recent advancements in both theory and practical implementation of plasmonic probes. Encompassing multiple disciplines, the field of plasmonics provides a versatile and flexible platform for nanoscale sensing and imaging. Despite being a relatively young field, plasmonic probes have come a long way, with applications in chemical, biological, civil, and architectural fields as well as enabling many analytical schemes such as immunoassay, biomarkers, environmental indexing, and water quality sensing, to name but a few. The objective of the book is to present in-depth analysis of the theory and applications of novel probes based on plasmonics, with a broad selection of specially-invited chapters on the development, fabrication, functionalization, and implementation of plasmonic probes as well as their integration with current technologies and future outlook. This book is designed to cater to the needs of novice, seasoned researchers and practitioners in academia and industry, as well as medical and environmental fields.
This book presents the conference proceedings of the F-EIR Conference 2021, Environment Concerns and its Remediation held in Chandigarh, India, October 18-22, 2021. The purpose of the conference and the volume is to present new ideas across a range of disciplines in environmental science, with a focus on theoretical and practical approaches to clean production aimed at preventing the production of waste, while increasing efficiencies in the uses of energy, water, and renewable resources. With contributions from leading experts equipped with state-of-the-art information and technology, the book covers topics of sustainability and resilience, chemical and environmental engineering, materials science, biotechnology, health-related microorganisms, and green technologies. The book will be of interest to scientists, engineering professionals, architects, environmental scientists, academicians, economists, and students engaged in these disciplines.
This book provides a comprehensive presentation of the most frequently used high resolution manufacturing techniques available, as well as the polymeric materials used for each of the techniques. Divided into two parts covering the technologies and materials used and the impact on different research fields and case studies, High Resolution Manufacturing from 2D to 3D/4D Printing: Applications in Engineering and Medicine addresses issues like throughput improvement by volumetric 3D printing and presenting novel applications and case studies. In addition, this book also covers the latest breakthrough developments and innovations to help readers understand the future applications of this technology across various disciplines, including biomedicine, electronics, energy, and photonics.
This updated and expanded Second Edition of Dr. Erickson's Analytical Chemistry of PCBs appears a decade after the first and is completely revised and updated. The changes from the First Edition reflect the significant growth in the area and a growing appreciation of the importance of PCB analysis to our culture. This book is a comprehensive review of the analytical chemistry of PCBs. It is part history, part annotated bibliography, part comparison, and part guidance. Featuring a new chapter on analyst/customer interactions and several new appendices, the Second Edition is an invaluable resource for both chemists with no experience in PCB analysis and seasoned PCB researchers.
From reviews of previous volumes: 'This volume continues the valuable service that has been rendered by the Modern Aspects series.'-Journal of Electroanalytical Chemistry 'Extremely well referenced and very readable....Maintains the overall high standards of the series.'-Journal of the American Chemical Society |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Technological Innovation for Applied AI…
Luis M. Camarinha-Matos, Pedro Ferreira, …
Hardcover
R3,419
Discovery Miles 34 190
Proceedings of International Conference…
Nabendu Chaki, Jerzy Pejas, …
Hardcover
R7,137
Discovery Miles 71 370
Modern Industrial IoT, Big Data and…
Victor Chang, Muthu Ramachandran, …
Hardcover
R7,010
Discovery Miles 70 100
CompTIA Data+ DA0-001 Exam Cram
Akhil Behl, Sivasubramanian
Digital product license key
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,742
Discovery Miles 27 420
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
|