![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > General
This is Volume 5 of a Handbook that has been well-received by the
thermal analysis and calorimetry community. All chapters in all
five volumes are written by international experts in the subject.
The fifth volume covers recent advances in techniques and
applications that complement the earlier volumes. The chapters
refer wherever possible to earlier volumes, but each is complete in
itself. The latest recommendations on Nomenclature are also
included. Amongst the important new techniques that are covered are
micro-thermal analysis, pulsed thermal analysis, fast-scanning
calorimetery and the use of quartz-crystal microbalances. There are
detailed reviews of heating - stage spectroscopy, the range of
electrical techniques available, applications in rheology,
catalysis and the study of nanoparticles. The development and
application of isoconversional methods of kinetic analysis are
described and there are comprehensive chapters on the many facets
of thermochemistry and of measuring thermophysical properties.
Applications to inorganic and coordination chemistry are reviewed,
as are the latest applications in medical and dental sciences,
including the importance of polymorphism. The volume concludes with
a review of the use and importance of thermal analysis and
calorimetry in quality control.
David I.A. Millar's thesis explores the effects of extreme conditions on energetic materials. His study identifies and structurally characterises new polymorphs obtained at high pressures and/or temperatures. The performance of energetic materials (pyrotechnics, propellants and explosives) can depend on a number of factors including sensitivity to detonation, detonation velocity, and chemical and thermal stability. Polymorphism and solid-state phase transitions may therefore have significant consequences for the performance and safety of energetic materials. In order to model the behaviour of these important materials effectively under operational conditions it is essential to obtain detailed structural information at a range of temperatures and pressures.
In response to the growing use of mass spectrometry in the clinical and biomedical fields, this book collects recent research involving electrospray ionization, neuronal systems, and structural modifications of proteins. The significant advances in instrumentation, methodology, experimentation presented herein will serve to expand the current concept of clinical mass spectrometry.
In the broad field of supramolecular chemistry, the design and hence the use of chemosensors for ion and molecule recognition have developed at an extroardinary rate. This imaginative and creative area which involves the interface of different disciplines, e.g. organic and inorganic chemistry, physical chemistry, biology, medicine, environmental science, is not only fundamental in nature. It is also clear that progress is most rewarding for several new sensor applications deriving from the specific signal delivered by the analyte-probe interaction. Indeed, if calcium sensing in real time for biological purposes is actually possible, owing to the emergence of efficient fluorescent receptors, other elements can also be specifically detected, identified and finally titrated using tailored chemosensors. Pollutants such as heavy metals or radionuclides are among the main targets since their detection and removal could be envisioned at very low concentrations with, in addition, sensors displaying specific and strong complexing abilities. Besides, various species of biological interest (or others, the list is large) including sugars and other micellaneous molecules such as oxygen and carbon dioxide can be actually probed with optodes and similar devices. The present volume in which the key lectures of the workshop are collected gives a survey of the main developments in the field. The success of the workshop mainly came from the high quality of the lectures, the invited short talks, the two posters sessions and the many very lively discussions which without doubt will produce positive outcomes.
Statistics and Chemometrics for Analytical Chemistry 7th edition provides a clear, accessible introduction to main statistical methods used in modern analytical laboratories. It continues to be the ideal companion for students in Chemistry and related fields keen to build their understanding of how to conduct high quality analyses in areas such as the safety of food, water and medicines, environmental monitoring, and chemical manufacturing. With a focus on the underlying statistical ideas, this book incorporates useful real world examples, step by step explanation and helpful exercises throughout. Features of the new edition: * Significant revision of the Quality of analytical measurements chapter to incorporate more detailed coverage of the estimation of measurement uncertainty and the validation of analytical methods. * Updated coverage of a range of topics including robust statistics, Bayesian methods, and testing for normality of distribution, plus expanded material on regression and calibration methods. * Additional experimental design methods, including the increasingly popular optimal designs. * Worked examples have been updated throughout to ensure compatibility with the latest versions of Excel and Minitab. * Exercises are available at the end of each chapter to allow student to check understanding and prepare for exams. Answers are provided at the back of the book for handy reference. This book is aimed at undergraduate and graduate courses in Analytical Chemistry and related topics. It will also be a valuable resource for researchers and chemists working in analytical chemistry.
Focusing on the state of the art of electrode process chemistry, the contributors discuss a wide range of applications and provide coverage of advances in quantum mechanical theory of electron transfer and the mechanism of electrical passage through nerves and batteries for motor vehicles. Annotatio
Natural and Laboratory-Simulated Thermal Geochemical Processes compares a series of thermal natural geochemical events with thermally laboratory-simulated processes. The emphasis is on the geothermal events occurring in nature compared with those simulated in the laboratory, thus furnishing important information at the molecular level for such processes. The book covers the following topics: -Generation of petroleum and its thermal cracking;
The current volume covers research advances in nuclear magnetic resonance, mass spectrometry, and optical spectroscopy with emphasis on computer-assisted interpretation methodologies.
The Ebro is a typical Mediterranean river characterized by seasonal low flows and extreme flush effects, with important agricultural and industrial activity that has caused heavy contamination problems. This volume deals with soil-sediment-groundwater related issues in the Ebro river basin and summarizes the results generated within the European Union-funded project "AquaTerra." The following topics are highlighted: Hydrology and sediment transport and their alterations due to climate change, aquatic and riparian biodiversity in the Ebro watershed, occurrence and distribution of a wide range of priority and emerging contaminants, effects of chemical pollution on biota and integration of climate change scenarios with several aspects of the Ebro s hydrology and potential impacts of climate change on pollution. The primary objective of the book is to lay the foundation for a better understanding of the behavior of environmental pollutants and their fluxes with respect to climate and land use changes."
Experts from both academia and industry provide an overview of current research in computer-assisted analytical spectroscopy and chemometrics.
Basic Training in Chemistry is unique in that it gathers into one source the essential information that is usually widely dispersed. This book can be used as a quick reference guide to the different disciplines of Chemistry: the areas covered are General, Inorganic, Organic, and Instrumental Analysis. Although comprehensive in nature, Basic Training in Chemistry is not meant to replace any standard textbook but rather to be a supplement or additional source of information, or even a comprehensive review guide. Basic Training in Chemistry is a useful addition to any academic or commercial laboratory setting where access to a wide variety of information is needed. The book can be an exceptional source of information for the undergraduate or graduate student as well as for the experienced chemist. Anyone needing a single source of information covering several different disciplines will find this book to be an excellent addition to their usual references.
This book introduces the press release work carried out by Ministry of Ecology and Environment of the People's Republic of China in 2019. It is divided into four parts, each arranged chronologically. The first part contains the records of Li Ganjie, Minister of the Ministry of Ecology and Environment, who attended the press conference on "Promoting Ecological Civilization and Building a Beautiful China". The second part contains the records of Minister Li Ganjie's attendance at the press conference of the National People's Congress and the Chinese Political Consultative Conference as well as the "Minister channel". The third part contains the records of four press conferences on ecological and environmental protection held by the State Council Information Office of the People's Republic of China. The fourth part contains the records of 12 regular press conferences held by the Ministry of Ecology and Environment.
Prof. Jerzy Sobkowski starts off this 31st volume of Modern Aspects of Electrochemistry with a far-ranging discussion of experimental results from the past 10 years of interfacial studies. It forms a good background for the two succeeding chapters. The second chapter is by S. U. M. Khan on quantum mechanical treatment of electrode processes. Dr. Khan's experience in this area is a good basis for this chapter, the contents of which will surprise some, but which as been well refereed. Molecular dynamic simulation is now a much-used technique in physical electrochemistry and in the third chapter Ilan Benjamin has written an account that brings together information from many recent publications, sometimes confirming earlier modeling approaches and sometimes breaking new territory. In Chapter 4, Akiko Aramata's experience in researching single crystals is put to good advantage in her authoritative article on under- tential deposition. Finally, in Chapter 5, the applied side of electrochemistry is served by Bech-Neilsen et al. in the review of recent techniques for automated measurement of corrosion. J. O'M. Bockris, Texas A&M University B. E. Conway, University of Ottawa R. E. White, University of South Carolina Contents Chapter 1 METAL/SOLUTION INTERFACE: AN EXPERIMENTAL APPROACH Jerzy Sobkowski and Maria Jurkiewicz-Herbich I. Introduction.............................................. 1 II. Molecular Approach to the Metal/Solution Interface............. 3 1. Double-Layer Structure: General Considerations .......... 3 2. Solid Metal/Electrolyte Interface.......................... 8 3. Methods Used to Study Properties ofthe Metal/Solution Interface: Role of the Solvent and the Metal............. 15 The Thermodynamic Approach to the Metal/Solution Interface 35 III.
This book provides an authoritative review of the origin and extraction of strontium and its impact on the environment. It also presents the latest strontium decontamination and remediation strategies. Around the globe, nuclear power is being recognized as a major source of energy and is expected to play a crucial role in meeting the energy requirements of present day society. However, the pros and cons have to be considered, and the safe disposal of large amounts of radionuclide wastes is becoming a matter of great concern. These wastes encompass contaminants such as heavy metals and toxic substances, which may exist in solid, liquid or gaseous forms or a combination of these, and as such, their disposal requires particular attention. The book focuses on 90Sr, which is a predominant isotope of strontium and considered an intermediate level radioactive waste with a half-life of 28.8 years, average biological half-life of 18 years and 546 KeV decay energy. Written by expert contributors, it addresses occurrence, detection and extraction of strontium, the chemical and nuclear properties of strontium isotopes, the fate and migration of strontium in soil, its bioaccumulation, and its associated health impact, mechanistic toxicity response as well as related regulation and remediation. It appeals to scholars, scientists and environmental managers working with strontium contamination in the environment and its consequences.
Biological membranes play a central role in cell structure, shape and functions. However, investigating the membrane bilayer has proved to be difficult due to its highly dynamic and anisotropic structure, which generates steep gradients at the nanometer scale. Due to the decisive impact of recently developed fluorescence-based techniques, tremendous advances have been made in the last few years in our understanding of membrane characteristics and functions. In this context, the present book illustrates some of these major advances by collecting review articles written by highly respected experts. The book is organized in three parts, the first of which deals with membrane probes and model membranes. The second part describes the use of advanced quantitative and high-resolution techniques to explore the properties of biological membranes, illustrating the key progress made regarding membrane organization, dynamics and interactions. The third part is focused on the investigation of membrane proteins using the same techniques, and notably on the membrane receptors that play a central role in signaling pathways and therapeutic strategies. All chapters provide comprehensive information on membranes and their exploration for beginners in the field and advanced researchers alike.
'There is no higher or lower knowledge, but only one, flowing out of experimen tation. ' (Leonardo da Vinci, 1452-1519) Food materials are complex in terms of composition, structure and mechanical properties. In order to understand the relationship between these different kinds of complexity, the experimental food scientist has a wide range of physico-chemical techniques at his or her disposal. But, in practice, of course, there are often severe limitations on the techniques which are available for any particular investigation. Apart from obvious constraints associated with instrument cost and accessibility, one com mon problem is a lack of knowledge by the non-expert about the capabilities and limitations of every new advance in instrumentation. No individual worker in the field of food science can become expert in more than a very small number of experimental techniques. On the other hand, most of us wish to know enough about the major emerging experimental technologies to enable us to make a realistic assessment of what they may have to contribute towards any new problems that we may meet. This book collects together in a single volume an up-to-date set of introductory articles describing a range of new physico-chemical tech niques which can be used to probe food structure at the molecular, colloidal and microscopic levels. Each individual chapter is written by an acknowledged expert in his field.
Lycopodium Alkaloids: Isolation and Asymmetric Synthesis, by Mariko Kitajima and Hiromitsu Takayama.- Synthesis of Morphine Alkaloids and Derivatives, by Uwe Rinner and Tomas Hudlicky.- Indole Prenylation in Alkaloid Synthesis, by Thomas Lindel, Nils Marsch and Santosh Kumar Adla.- Marine Pyrroloiminoquinone Alkaloids, by Yasuyuki Kita and Hiromichi Fujioka.- Synthetic Studies on Amaryllidaceae and Other Terrestrially Derived Alkaloids, by Martin G. Banwell, Nadia Yuqian Gao, Brett D. Schwartz and Lorenzo V. White.- Synthesis of Pyrrole and Carbazole Alkaloids, by Ingmar Bauer and Hans-Joachim Knolker.-"
The latest volume of reviews by researchers in academic and industrial laboratories contains five chapters. They cover a surface-science approach to the semiconductor/electrolyte interface, photovoltaic and photo-electrochemical cells based on Schottky barrier heterojunctions, the mechanisms of form
In the past, the analysis of materials containing several elements presented unique problems for analytical chemists, so a sequence of wet chemical qualitative tests were performed to ensure each element in a sample was detected. Quantitative tests could then be performed with confidence. Modern analytical chemists can call on a range of specialist instrumental techniques which can detect the presence of all elements, often all at once, and often quantitatively. The drawback is that the instruments tend to be expensive, suited to particular sample types or matrices and complex in both setting up and in the interpretation of results. Furthermore the general analytical chemist may have access and familiarity with only one or two methods. The purpose of this book is to familiarize analytical chemists with all the multi-element analysis techniques, to enable them to specify the most appropriate test for any given sample. This book should be of interest to professional analytical chemists, geochemists, biologists and environmental scientists.
Take any combination of the following features: supramolecular structures with a specific fluorescent probe localized as you would like; nanoscale spatial reso- tion; tailor-made molecular and/or solid-state fluorescing nanostructures; us- friendly and/or high- throughput fluorescence techniques; the ability to do wh- ever you wish with just one single (supra)molecule; utilization of non-linear optical processes; and,last but not least,physical understanding of the processes resu- ing in a (biological) functionality at the single molecule level. What you will then have is some recent progress in physics,chemistry,and the life sciences leading to the development of a new tool for research and application. This was amply demonstrated at the 8th Conference on Methods and Applications of Fluorescence: Probes,Imaging,and Spectroscopy held in Prague,the Czech Republic on August 24th-28th, 2003. This formed a crossroad of ideas from a variety of natural science and technical research fields and biomedical applications in particular. This volume - the third book in the Springer-Verlag Series on Fluorescence - reviews some of the most characteristic topics of the multidisciplinary area of fluorescence applications in life sciences either presendted directly at th 8th MAF Conference or considered to be a cruical development in the field. In the initial contribution in Part 1 - Basics and Advanced Approaches,the - itors explain the basics of fluorescence and illustrate the relationship between some modern fluorescence techniques and classical approaches. The second contrigution by B.
Trace element analysis plays a prominent role in various fields, from mineralogy and geology to semiconductor manufacture and foods. In geochemical exploration, the analysis of trace elements assumes high significance due to the multifaceted role played by them. The analyte is at the detection limit of many instrumental techniques. This makes their determination difficult This book covers a wide spectrum of destructive and non-destructive analytical techniques and recent developments in them used all over the world, including developing countries, for quantitation of trace elements. With revolutionary progress in the last three to four decades in analytical techniques, several ICP-based techniques like ICP-OES and ICP-MS and other nuclear analytical techniques have enabled determination of trace elements at the ppb level. However, these methods require expensive instrumentation and cannot be made available everywhere. The quality of analytical data is dependent on valid reference standards. The book contains detailed sample preparation in varying matrices and an important chapter on statistical treatment of analytical data for the purpose of quality control and quality assurance. Pulling together, the book, containing the work carried out by the author's group in India, will be useful to analysts involved in geochemical explorations.
Now and in the future, the ever-growing demand for drinking water will lead many cities to implement indirect water reuse programs, where wastewater effluent becomes part of the drinking water sources. Pollution of those sources with emerging contaminants (micropollutants) such as endocrine disrupting compounds, pharmaceutically active compounds, pesticides and personal care products is a fact known worldwide. In this thesis, nanofiltration (NF) and reverse osmosis (RO) are demonstrated to be appropriate technologies for removing a large number of micropollutants; however, the performance of NF and RO can be questioned because there are limited tools that optimise quantification of the removal of contaminants. Therefore, in this thesis, by means of the use of multivariate data analysis techniques, removal quantification is effectively determined and more understanding of the separation of micropollutants by membranes is achieved.
to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth."
Stability constants are fundamental to understanding the behavior of metal ions in aqueous solution. Such understanding is important in a wide variety of areas, such as metal ions in biology, biomedical applications, metal ions in the environment, extraction metallurgy, food chemistry, and metal ions in many industrial processes. In spite of this importance, it appears that many inorganic chemists have lost an appreciation for the importance of stability constants, and the thermodynamic aspects of complex formation, with attention focused over the last thirty years on newer areas, such as organometallic chemistry. This book is an attempt to show the richness of chemistry that can be revealed by stability constants, when measured as part of an overall strategy aimed at understanding the complexing properties of a particular ligand or metal ion. Thus, for example, there are numerous crystal structures of the Li+ ion with crown ethers. What do these indicate to us about the chemistry of Li+ with crown ethers? In fact, most of these crystal structures are in a sense misleading, in that the Li+ ion forms no complexes, or at best very weak complexes, with familiar crown ethers such as l2-crown-4, in any known solvent. Thus, without the stability constants, our understanding of the chemistry of a metal ion with any particular ligand must be regarded as incomplete. In this book we attempt to show how stability constants can reveal factors in ligand design which could not readily be deduced from any other physical technique.
This book offers an overview of state-of-the-art in non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specific detection tools. Advanced materials play multiple roles in ultrasensitive detection. Optical and electrochemical detection tools are among the most widely investigated to analyze non amplified nucleic acids. Biosensors based on piezoelectric crystal have been also used to detect unamplified genomic DNA. The main scientific topics related to DNA diagnostics are discussed by an outstanding set of authors with proven experience in this field. |
![]() ![]() You may like...
Handbook of Thermal Analysis and…
Sergey Vyazovkin, Nobuyoshi Koga, …
Paperback
Data Analysis for Omic Sciences: Methods…
Joaquim Jaumot, Carmen Bedia, …
Hardcover
R6,789
Discovery Miles 67 890
Assessing Transformation Products of…
Joerg E. Drewes, Thomas Letzel
Hardcover
R5,138
Discovery Miles 51 380
The Handbook of Metabolic Phenotyping
John C. Lindon, Jeremy K. Nicholson, …
Paperback
R5,254
Discovery Miles 52 540
Alteration of Ovoproducts - From…
Olivier Goncalves, Jack Legrand
Hardcover
R4,183
Discovery Miles 41 830
|