![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > General
This book is about our ordinary concept of matter in the form of enduring continuants and the processes in which they are involved in the macroscopic realm. It emphasises what science rather than philosophical intuition tells us about the world, and chemistry rather than the physics that is more usually encountered in philosophical discussions. The central chapters dealing with the nature of matter pursue key steps in the historical development of scientific conceptions of chemical substance. Like many contemporary discussions of material objects, it relies heavily on mereology. The classical principles are applied to the mereological structure of regions of space, intervals of time, processes and quantities of matter. Quantities of matter, which don't gain or lose parts over time, are distinguished from individuals, which are typically constituted of different quantities of matter at different times. The proper treatment of the temporal aspect of the features of material objects is a central issue in this book, which is addressed by investigating the conditions governing the application of predicates relating time and other entities. Of particular interest here are relations between quantities of matter and times expressing substance kind, phase and mixture. Modal aspects of these features are taken up in the final chapter.
This book offers a unique perspective and novel information on the significant contributions of Russian scientists to analytical chemistry and chemical analysis. Written by the Editor-in-Chief of the Journal of Analytical Chemistry, it discusses various examples of new methods and approaches originating in Russia, such as chromatography, electrothermal atomic absorption spectrometry, Kumakhov X-ray optics, the Spolsky effect in fluorescent analysis and important innovations in mass spectrometry, which are already widely used. Other original developments, such as the chromatomembrane and stoichiographic methods, are on their way to international recognition. Tremendous expertise in the analysis of minerals and high-purity and special-purpose substances has accumulated in Russian laboratories, and as such this book appeals to anyone interested in the development of science in Russia; to physicists, chemists, and other specialists dealing with chemical analysis; and to postgraduates and students of chemistry-related disciplines.
This book provides a state-of-the-art compendium on the role of proteoglycans and glycosaminoglycans during development and in cancer. It also suggests directions for novel therapeutic and biotechnological applications in stem cell biology. Proteoglycans and glycosaminoglycans, as part of the extracellular matrix, are multifunctional modulators of growth factor, cytokine, integrin and morphogen signaling, which determine both self-renewal, senescence and/or differentiation of stem cells during development. Since proteoglycans modulate cell adhesion and migration they are important organizers of the extracellular matrix within the proper stem cell niche. A malfunctioning of proteoglycans and glycosaminoglycans contributes to the cancer stem cell phenotype, which is linked to therapeutic resistance and recurrence in malignant disease. This book is essential reading for anyone interested in the extracellular matrix and its role in development. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
Fundamentals of Quorum Sensing, Analytical Methods and Applications in Membrane Bioreactors, Volume 81, describes the novelty of membrane bioreactors for the treatment of wastewater and the removal of specific contaminants that affect water quality or pose harm to humans. Topics of note in the updated release include Water Chemistry and Microbiology, Quorum Sensing as Bacterial Communication Language, the Effects of Quorum Sensing, Quorum Quenching, Membrane Bioreactors for Wastewater Treatment, Removal of Specific Contaminants, Microextraction Techniques, and the Determination of Quorum Sensing Chemicals. The contents of this updated volume will be appealing to a wide range of researchers as the authors of most chapters are experts in their respective fields with numerous published studies.
The second edition defines the tools used in QA/QC, especially the application of statistical tools during analytical data treatment. Clearly written and logically organized, it takes a generic approach applicable to any field of analysis. The authors begin with the theory behind quality control systems, then detail validation parameter measurements, the use of statistical tests, counting the margin of error, uncertainty estimation, traceability, reference materials, proficiency tests, and method validation. New chapters cover internal quality control and equivalence method, changes in the regulatory environment are reflected throughout, and many new examples have been added to the second edition.
This thesis focuses on theoretical analysis of the sophisticated ultrafast optical experiments that probe the crucial first few picoseconds of quantum light harvesting, making an important contribution to quantum biology, an exciting new field at the intersection of condensed matter, physical chemistry and biology. It provides new insights into the role of vibrational dynamics during singlet fission of organic pentacene thin films, and targeting the importance of vibrational dynamics in the design of nanoscale organic light harvesting devices, it also develops a new wavelet analysis technique to probe vibronic dynamics in time-resolved nonlinear optical experiments. Lastly, the thesis explores the theory of how non-linear "breather" vibrations are excited and propagate in the disordered nanostructures of photosynthetic proteins.
Advances in Biomembranes and Lipid Self-Assembly, Volume 27, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. The assortment of chapters in this volume represents both original research and comprehensive reviews written by world leading experts and young researchers, with topics of note in this release including TiO2 Nanomaterials as Electrochemical Biosensors for Cancer, the Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches, and Shear-Induced Lamellar/Onion Transition in Surfactant Systems.
This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.
This thesis builds on recent innovations in multi-phase emulsion droplet design to demonstrate that emulsion morphologies enable a useful variety of dynamic optical phenomena. Despite the highly dynamic nature of fluid morphologies and their utility for stimuli-responsive, dynamic optical materials and devices, fluid matter is underrepresented in optical technology. Using bi-phase emulsion droplets as refractive micro-optical components, this thesis realizes micro-scale fluid compound lenses with optical properties that vary in response to changes in chemical concentrations, structured illumination, and thermal gradients. Theoretical considerations of emulsions as optical components are used to explain a previously unrecognized total internal reflection-enabled light interference phenomenon in emulsion droplets that results in rich structural coloration. While this work is focused on the fundamental optics of emulsion droplets, it also facilitates the use of light-emitting emulsion morphologies as chemo-optical transducers for early-stage food-borne pathogen detection. This thesis beautifully demonstrates the virtue of fundamental interdisciplinary exploration of unconventional material systems at the interface of optics, chemistry, and materials science, and the benefits arising from translation of the acquired knowledge into specific application scenarios.
This book provides deep insight into the physical quantity known as chemical activity. The author probes deep into classical thermodynamics in Part I, and then into statistical thermodynamics in Part II, to provide the necessary background. The treatment has been streamlined by placing some background material in appendices. Chemical Activity is of interest not only to those in chemical thermodynamics, but also to chemical engineers working with mass transfer and its applications - for example, separation methods.
Basic Laboratory Methods for Biotechnology, Third Edition is a versatile textbook that provides students with a solid foundation to pursue employment in the biotech industry and can later serve as a practical reference to ensure success at each stage in their career. The authors focus on basic principles and methods while skillfully including recent innovations and industry trends throughout. Fundamental laboratory skills are emphasized, and boxed content provides step by step laboratory method instructions for ease of reference at any point in the students' progress. Worked through examples and practice problems and solutions assist student comprehension. Coverage includes safety practices and instructions on using common laboratory instruments. Key Features: Provides a valuable reference for laboratory professionals at all stages of their careers. Focuses on basic principles and methods to provide students with the knowledge needed to begin a career in the Biotechnology industry. Describes fundamental laboratory skills. Includes laboratory scenario-based questions that require students to write or discuss their answers to ensure they have mastered the chapter content. Updates reflect recent innovations and regulatory requirements to ensure students stay up to date. Tables, a detailed glossary, practice problems and solutions, case studies and anecdotes provide students with the tools needed to master the content. To succeed in the lab, it is crucial to be comfortable with the math calculations that are part of everyday work. This accessible introduction to common laboratory techniques focuses on the basics, helping even readers with good math skills to practice the most frequently encountered types of problems. Basic Laboratory Calculations for Biotechnology, Second Edition discusses very common laboratory problems, all applied to real situations. It explores multiple strategies for solving problems for a better understanding of the underlying math. Primarily organized around laboratory applications, the book begins with more general topics and moves into more specific biotechnology laboratory techniques at the end. This book features hundreds of practice problems, all with solutions and many with boxed, complete explanations; plus hundreds of "story problems" relating to real situations in the lab. Additional features include: Discusses common laboratory problems with all material applied to real situations Presents multiple strategies for solving problems help students to better understand the underlying math Provides hundreds of practice problems and their solutions Enables students to complete the material in a self-paced course structure with little teacher assistance Includes hundreds of "story problems"that relate to real situations encountered in the laboratory
The participation in interlaboratory studies and the use of
Certified Reference Materials (CRMs) are widely recognised tools
for the verification of the accuracy of analytical measurements and
they form an integral part of quality control systems used by many
laboratories, e.g. in accreditation schemes. As a response to the
need to improve the quality of environmental analysis, the European
Commission has been active in the past fifteen years, through BCR
activity (now renamed Standards, Measurements and Testing
Programme) in the organisation of series of interlaboratory studies
involving expert laboratories in various analytical fields
(inorganic, trace organic and speciation analysis applied to a wide
variety of environmental matrices). The BCR and its successor have
the task of helping European laboratories to improve the quality of
measurements in analytical sectors which are vital for the European
Union (biomedical, agriculture, food, environment and industry);
these are most often carried out in support of EC regulations,
industrial needs, trade, monitoring activities (including
environment, agriculture, health and safety) and, more generally,
when technical difficulties hamper a good comparability of data
among EC laboratories. The collaborative projects carried out so
far have placed the BCR in the position of second world CRM
producer (after NIST in the USA). "Interlaboratory Studies and Certification of Reference
Materials for Environmental Analysis" gives an account of the
importance of reference materials for the quality control of
environmental analysis and describes in detail the procedures
followed by BCR to prepare environmental reference materials,
including aspects related to sampling, stabilization,
homogenisation, homogeneity and stability testing, establishment of
reference (or certified) values, and use of reference materials.
Examples of environmental CRMs produced by BCR within the last 15
years are given, which represent more than 70 CRMs covering
different types of materials (plants, biological materials, waters,
sediments, soils and sludges, coals, ash and dust materials)
certified for a range of chemical parameters (major and trace
elements, chemical species, PAHs, PCBs, pesticides and
dioxins). The final section of the book describes how to organise
improvement schemes for the evaluation method and/or laboratory
performance. Examples of interlaboratory studies (learning scheme,
proficiency testing and intercomparison in support to prenormative
research) are also given.
The different LC-MS techniques available today were developed to
suit specific analytical needs and the application range covered by
each one is wide, but still limited. GC amenable compounds can be
all analyzed with a single GC-MS system whereas HPLC applications
call for specific LC-MS instrumental arrangements. ESI, APCI, APPI,
and EI are ionization techniques that can be combined with
different analyzers, in single or tandem configuration, to create
the ultimate system for a certain application. Once approaching
LC-MS for a specific need, the fast technical evolution and the
variegated commercial offer can induce confusion in the potential
user.
This volume compiles and discusses the fundamental and multidisciplinary knowledge on adsorption and separation processes using zeolites as adsorbents. Over the last decade, a large amount of research has been carried out for the development of zeolites as adsorbents. However, there is still a growing interest to increase the understanding of such selective adsorbents. Therefore, synthesis strategies and new approaches for developing new selective zeolite adsorbents for gas separation are presented in the first chapter. In addition, a chapter focused on adsorption characterization techniques of microporous materials is included. This will be helpful for advanced readers, since the new IUPAC recommendations for microporous characterization are not still widely employed by the zeolite community. Experimental and theoretical aspects of economically and environmentally relevant separations, which have been successfully carried out with zeolites, are discussed in detail in subsequent chapters. Finally, industrial zeolite based adsorption and separation processes as well as current perspectives for new zeolite based separations, and improvements of current technologies are presented.
This book outlines the current status of the environment in the Republic of Adygea in Russia. The book assesses the environmental conditions, ecological state, climate and vegetation change, anthropogenic loads to soil, water and atmosphere as well as highlighting the potential of water resources, renewable energy and development of tourism, agriculture and industry in this region. It also presents the mechanisms of legal, ecological and economic regulation and environmental insurance in the Republic of Adygea. This book introduces the Republic of Adygea to readers who are not familiar with the Republic and its beautiful landscapes, history and people. It offers a valuable source of information for a broad readership, from students and scientists interested in environmental sciences, to policymakers and practitioners working in the fields of environmental policy and management.
In this book, the author provides expert analysis on naturally occurring iridoids, their chemistry and their distribution in plants and insects. Particular attention is given to the pharmacology of iridoids and their prospective applications in pharmaceutical and agricultural industries. Iridoids are found in a wide variety of plants and some insects, and they are structurally derived from monoterpenoid natural products. In the first two chapters of this book, the author describes the iridoids classification, occurrence and distribution in plants and insects. The following chapters cover different chromatographic and spectroscopic techniques that can be used to identify and quantify iridoids in herbal formulations, and also the biosynthesis of iridoids, in which the reader will discover a metabolomics and transcriptomics analysis to identify the genes involved in the biosynthesis. The final chapters provide insights on several pharmacological activities of iridoids, their physiological role in insects, pharmacokinetics in mammals, insects and microorganisms, and their applications in medicine and agriculture. This book will engage students and researchers interested in the chemistry of natural products, and it will also appeal to medicinal chemists and practitioners working in the design of new herbal drugs with bioactive pure iridoids.
This book offers comprehensive information on the developments and applications of the solid phase microextraction (SPME) technique. The first part of the book briefly introduces readers to the fundamentals of SPME, while subsequent sections describe the applications of SPME technique in detail, including environmental analysis (air, water, soil/sediments), food analysis (volatile/nonvolatile compounds), and bioanalysis (plants, animal tissues, body fluids). The advantages and future challenges of the SPME technique are also discussed. Including recent research advances and further developments of SPME, the book offers a practical reference guide and a valuable resource for researchers and users of SPME techniques. The target audience includes analytical chemists, environmental scientists, biological scientists, material scientists, and analysts, as well as students at universities/institutes in related fields. Dr. Gangfeng Ouyang is a Professor at the School of Chemistry and Chemical Engineering, Sun Yat-sen University, China. Dr. Ruifen Jiang is an Associate Professor at the School of Environment, Jinan University, China.
This book describes the development of three dimensional electroactive fibres using a novel coaxial wet-spinning approach from organic conductors in combination with non-conducting hydrogel polymers. This book also presents the characterization and evaluation of multiaxial biofibres in terms of mechanical, physical, electrochemical and biological properties, and explores their use in a diverse range of applications including implantable electrodes, drug delivery systems and energy-storage systems. In the first chapter, the author highlights the significance of engineering three dimensional fibres, introduces the involved hydrogels and organic conductors with emphasis on their biomedical application, and collects some of the previously established methods for fabrication of biofibres. In the second chapter, particular attention is given to the overall experimental fabrication methods and characterization analyses conducted in the work. Chapters three to five present the main findings of this work, in which readers will discover how novel hybrid hydrogel fibres with an inner core of chitosan and alginate were prepared and characterized, how graphene was incorporated into coaxial wet-spun biofibres, and how one-dimensional triaxial fibres were developed using a novel coaxial wet-spinning fibre production method and applied as potential battery devices. In the final chapter of this work, the author summarizes the main achievements of the work and outlines some recommendations for future research. |
![]() ![]() You may like...
Fundamentals of High Frequency CMOS…
Duran Leblebici, Yusuf Leblebici
Hardcover
R2,551
Discovery Miles 25 510
Level 1/Level 2 Cambridge National in…
Kevin Wells, Sarah McAtominey, …
Paperback
R1,073
Discovery Miles 10 730
Level 1/Level 2 Cambridge National in IT…
Maureen Everett, Sonia Stuart, …
Paperback
R1,060
Discovery Miles 10 600
|