![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.
Microbial biosurfactant compounds are a group of structurally diverse molecules produced by microorganisms, and are mainly categorized according to their chemical structure. The diversity of microbial biosurfactants makes them versatile and means that they offer a range of capabilities, while at the same time being economically sustainable. As such, they have potential applications in environmental processes, as well as in food, biomedicine and other industries. This book discusses innovative approaches and cutting-edge research that utilize the various properties of biosurfactants. Drawing on research from around the globe, it provides an up-to-date review of biosurfactant applications and their importance in fields such as medicine, gene therapy, immunotherapy, antimicrobial bioremediation and agriculture. It also discusses their anti-adhesive properties. The book will appeal to academics and researchers in the field of microbiology, as well as policymakers. It also serves as additional reading material for undergraduate and graduate students of agriculture, ecology, soil science, and environmental sciences.
This book provides a comprehensive description of phosphate solubilizing microorganisms and highlights methods for the use of microphos in different crop production systems. The focus is on understanding both the basic and applied aspects of phosphate solubilizing microorganisms and how phosphorus-deficient soils can be transformed into phosphorus-rich ones by applying phosphate solubilizing microorganisms. The interaction of rhizosphere phosphate solubilizing microorganisms and environmental variables, as well as their importance in the production of crops such as legumes, cereals, vegetables etc. are discussed and considered. The use of cold-tolerant phosphate solubilizing microorganisms to enhance crop productivity in mountainous regions is examined, as are the ecological diversity and biotechnological implications of phosphate solubilizing microorganisms. Lastly, the role of phosphate solubilizing microorganisms in aerobic rice cultivation is highlighted. This volume offers a broad overview of plant disease management using phosphate solubilizing microbes and presents strategies for the management of cultivated crops. It will therefore be of special interest to both academics and professionals working in the fields of microbiology, soil microbiology, biotechnology and agronomy, as well as the plant protection sciences. This timely reference book provides an essential and comprehensive source of material, as it includes recent findings on phosphate solubilizing microorganisms and their role in crop production.
Presenting a novel view of the quantitative modeling of microbial growth and inactivation patterns in food, water, and biosystems, Advanced Quantitative Microbiology for Foods and Biosystems: Models for Predicting Growth and Inactivation describes new models for estimating microbial growth and survival. The author covers traditional and alternative models, thermal and non-thermal preservation, water disinfection, microbial dose response curves, interpretation of irregular count records, and how to estimate the frequencies of future outbursts. He focuses primarily on the mathematical forms of the proposed alternative models and on the rationale for their introduction as substitutes to those currently in use. The book provides examples of how some of the methods can be implemented to follow or predict microbial growth and inactivation patterns, in real time, with free programs posted on the web, written in MS ExcelO, and examples of how microbial survival parameters can be derived directly from non-isothermal inactivation data and then used to predict the efficacy of other non-isothermal heat treatments. Featuring numerous illustrations, equations, tables, and figures, the book elucidates a new approach that resolves several outstanding issues in microbial modeling and eliminates inconsistencies often found in current methods.
This book presents research on the challenges and potential of fungal contribution in agriculture for food substantiality. Research on fungi plays an essential role in the improvement of biotechnologies which lead global sustainable food production. Use of fungal processes and products can bring increased sustainability through more efficient use of natural resources. Fungal inoculum, introduced into soil together with seed, can promote more robust plant growth through increasing plant uptake of nutrients and water, with plant robustness being of central importance in maintaining crop yields. Fungi are one of nature's best candidates for the discovery of food ingredients, new drugs and antimicrobials. As fungi and their related biomolecules are increasingly characterized, they have turned into a subject of expanding significance. The metabolic versatility makes fungi interesting objects for a range of economically important food biotechnology and related applications. The potential of fungi for a more sustainable world must be realized to address global challenges of climate change, higher demands on natural resources.
Beneficial Microbes in Agro-Ecology: Bacteria and Fungi is a complete resource on the agriculturally important beneficial microflora used in agricultural production technologies. Included are 30 different bacterial genera relevant in the sustainability, mechanisms, and beneficial natural processes that enhance soil fertility and plant growth. The second part of the book discusses 23 fungal genera used in agriculture for the management of plant diseases and plant growth promotion. Covering a wide range of bacteria and fungi on biocontrol and plant growth promoting properties, the book will help researchers, academics and advanced students in agro-ecology, plant microbiology, pathology, entomology, and nematology.
Microoganisms are distributed across every ecosystem, and microbial transformations are fundamental to the operation of the biosphere. Microbial ecology is the study of this interaction between microorganisms and their environment, and arguably represents one of the most important areas of biological research. Yet for many years our study of microbial flora was severely limited: the primary method of culturing microorganisms on media allowed us to study only between 0.1 and 10% of the total microbial flora in any given environment. Molecular Microbial Ecology gives a comprehensive guide to the recent revolution in the study of microorganisms in the environment. Details are given on molecular methods for isolating some of the previously uncultured and numerically dominant microbial groups. PCR-based approaches to studying prokaryotic systematics are described, including ribosomal RNA analysis and stable isotope probing. Later chapters cover DNA hybridisation techniques (including fluorescent in situ hybridisation), as well as genomic and metagenomic approaches to microbial ecology. Gathering together some of the world's leading experts, this book provides an invaluable introduction to the modern theory and molecular methods used in studying microbial ecology.
Implications of Resource-Ratio Theory for Microbial Ecology; V.H. Smith. 13C Tracer Methodology in Microbial Ecology with Special Reference to Primary Production Processes in Aquatic Environments; T. Hama, et al. Sex in Ciliates; F. Dini, D. Nyberg. Microbial Ecology in Lake Ciso; C. PedroAlio, R. Guerrero. Biological Activities of Symbiotic and Parasitic Protists in Low Oxygen Environments; A.G. Williams, D. Lloyd. Polymorphism in Bacteria; P.B. Rainey, et al. Decomposition of Shoots of a Saltmarsh Grass; S.Y. Newell. Dynamics of Autotrophic Picoplankton in Marine and Freshwater Ecosystems; T. Weisse. Bacterial Growth Rates and Production As Determined by [3HMethyl]thymidine? R.D. Robarts, T. Zohary. Index.
Exploring the functional anatomy and physiology of the ventilatory control system from the intracellular to the integrative level, this references serves as the first source to offer comprehensive coverage of the influences of various pharmacological agents on the control of breathing.
Real-time PCR has established itself as a sensitive and specific qualitative and quantitative technique that has become important to all areas of microbiology. This invaluable book describes and explains some of the more complex aspects of real-time PCR presenting a background for the novice, a theoretical reference for the experienced user, and useful discussions of future developments. Chapters address the basics of PCR history, oligonucleotide design, target preparation, standardisation, quantification, various applications, and future challenges. The final chapter is presented in the format of a roundtable discussion providing an insightful, topical and interesting discourse with contributions from over 30 authorities and experts on real-time PCR. The editor and authors have produced an excellent book that will be extremely useful for all microbiologists. It is a recommended book for all microbiology laboratories.
Written for the professional who has an immediate need for the information but has little or no training in the subject, Cleanroom Microbiology for the Non-Microbiologist, Second Edition introduces principles of microbiology. It explains the consequences of microbiological contamination, what contamination is all about, how microorganisms grow, and how they can be controlled. The author introduces the vocabulary of microbiology and the types, sources, control, and elimination of organisms encountered in the manufacture of sterile products. Beginning with a discussion of the various types of organisms, the text then covers applications for bacterial detection, avoidance of contamination, cleanroom design considerations, and validation of disinfection methods. New topics covered include: -International cleanroom standards -Application of rapid, automated methods for detecting and identifying microbial contaminants -In-depth examination of the role of biofilms in pure water systems -Increased coverage of production of therapeutic products derived from live tissues and cells
This pioneering book focuses on Neotropical endophytic fungi, providing a comprehensive overview of their diversity, ecology, and biotechnological applications in medicine, agriculture, and industry. Despite their rich diversity, the endophytic fungi associated with plants of Central and South American biomes remain largely unknown. The book addresses that knowledge gap by offering insights into Neotropic endophytic fungal community.
This book provides a comprehensive overview of the design, generation and characterization of minimal cell systems. Written by leading experts, it presents an in-depth analysis of the current issues and challenges in the field, including recent advances in the generation and characterization of reduced-genome strains generated from model organisms with relevance in biotechnology, and basic research such as Escherichia coli, Corynebacterium glutamicum and yeast. It also discusses methodologies, such as bottom-up and top-down genome minimization strategies, as well as novel analytical and experimental approaches to characterize and generate minimal cells. Lastly, it presents the latest research related to minimal cells of serveral microorganisms, e.g. Bacillus subtilis. The design of biological systems for biotechnological purposes employs strategies aimed at optimizing specific tasks. This approach is based on enhancing certain biological functions while reducing other capacities that are not required or that could be detrimental to the desired objective. A highly optimized cell factory would be expected to have only the capacity for reproduction and for performing the expected task. Such a hypothetical organism would be considered a minimal cell. At present, numerous research groups in academia and industry are exploring the theoretical and practical implications of constructing and using minimal cells and are providing valuable fundamental insights into the characteristics of minimal genomes, leading to an understanding of the essential gene set. In addition, research in this field is providing valuable information on the physiology of minimal cells and their utilization as a biological chassis to which useful biotechnological functions can be added.
Highly recommended by CHOICE, Oct 2018 Extremophiles are nature's ultimate survivors, thriving in environments ranging from the frozen Antarctic to abyssal hot hydrothermal vents. Their lifeforms span bacteria to fishes, and are categorized as halophiles from hypersaline environments, acidophiles from acidic waters, psychrophiles from cold habitats, and thermophiles from warm waters. Extremophiles: From Biology to Biotechnology comprehensively covers the basic biology, physiology, habitats, secondary metabolites for bioprospecting, and biotechnology of these extreme survivors. The chapters focus on the novel genetic and biochemical traits that lend these organisms to biotechnological applications. Couples studies of marine extremophile biology/genomics and extremophile culture for biotechnological applications with the latest advances in bio-prospecting and bio-product development Includes practical experiments that a laboratory can use to replicate extreme habitats for research purposes Presents latest advances in extremophile genomics to give the reader a better understanding of the regulatory mechanisms of extremophiles Offers insights into the production of commercially important extremozymes, carotenoids, bioactive compounds and secondary metabolites of medicinal value. This unique guide serves as a resource for biotechnologists who wish to explore extremophiles for their commercial potential, as well as a valuable reference for teaching undergraduate, graduate and postgraduate students.
This book highlights the latest discoveries about the nitrogen cycle in the soil. It introduces the concept of nitrogen fixation and covers important aspects of nitrogen in soil and ecology such as its distribution and occurrence, soil microflora and fauna and their role in N-fixation. The importance of plant growth-promoting microbes for a sustainable agriculture, e.g. arbuscular mycorrhizae in N-fixation, is discussed as well as perspectives of metagenomics, microbe-plant signal transduction in N-ecology and related aspects. This book enables the reader to bridge the main gaps in knowledge and carefully presents perspectives on the ecology of biotransformations of nitrogen in soil.
The first and second editions of Food Microbiology and Hygiene are established reference texts for the food industry, giving practical information on food microbiology, hygiene, quality assurance and factory design. This third edition has been revised and updated to include the latest developments concerning HACCP, food legislation and modern methods of microbial examination. The book is designed for microbiologists working in the food industry, quality assurance personnel and academic researchers.
This thesis studies the impact of food processing on the stability and antioxidant capacity of anthocyanins in aqueous and real food systems. It investigates the effects of temperature and pH on the stability and antioxidant capacity of anthocyanins in aqueous systems and in real semi-solid and solid food systems including bread and biscuits. The results of this thesis offer food manufacturers valuable guidelines on the production of functional foods containing anthocyanins, helping to reduce anthocyanins loss and achieve a desired amount of anthocyanins in foods with extra health benefits.
This second edition is fully updated throughout and covers the emerging evidence that indicates that the Gadd45 family of proteins plays a unique and critical role as sensors of stress, including genotoxic, physiological, and oncogenic stress. It sheds light on the complex cellular stress response, encompassing myriad molecular pathways with a plethora of regulators and effectors. The GADD45 stress response genes encode small (18 kd) nuclear/cytoplasmic proteins. These genes are rapidly induced by a wide variety of endogenous and exogenous stress stimuli. Despite marked similarities, Gadd45 genes are regulated differentially and exhibit functional diversity. Gadd45 proteins respond to physiological and oncogenic stress, and are implicated in cell cycle arrest, DNA demethylation and repair, apoptosis, cell survival, genomic stability, and inflammation. The purpose of this book is to provide a comprehensive overview of the unique global role that Gadd45 proteins play as stress sensors and the molecular pathways involved.
Toxic substances threatens aquatic and terrestrial ecosystems and ultimately human health. The book is a thoughtful effort in bringing forth the role of biotechnology for bioremediation and restoration of the ecosystems degraded by toxic and heavy metal pollution. The introductory chapters of the book deal with the understanding of the issues concerned with the pollution caused by toxic elements and heavy metals and their impacts on the different ecosystems followed by the techniques involved in monitoring of the pollution. These techniques include use of bio-indicators as well as modern techniques for the assessment and monitoring of toxicants in the environment. Detailed chapters discussing the role of microbial biota, aquatic plants, terrestrial plants to enhance the accumulation efficiency of these toxic and heavy metals are followed by remediation techniques involving myco-remediation, bio-pesticides, bio-fertilizers, phyto-remediation and rhizo-filtration. A sizable portion of the book has been dedicated to the advanced bio-remediation techniques which are finding their way from the laboratory to the field for revival of the degraded ecosystems. These involve bio-films, micro-algae, genetically modified plants and filter feeders. Furthermore, the book is a detailed comprehensive account for the treatment technologies from unsustainable to sustainable. We believe academicians, researchers and students will find this book informative as a complete reference for biotechnological intervention for sustainable treatment of pollution.
This book aims to advance the understanding of deubiquitinases (DUBs) and DUB-like enzymes. Chapters detail methods used to identify, classify,and biochemically characterize DUBs along with approaches that enable both the determination and alteration of DUB biological function.. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Deubiquitinases: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
In recent years there has been increased interest in the possibility of rapid microbiological methods offering enhanced potential error detection capabilities. However, these methods raise a number of questions, such as how to validate new methods, will they be accepted by the pharmacopoeias, and, most importantly, how will the regulators respond? Rapid Microbiological Methods in the Pharmaceutical Industry answers these questions and more. Martin Easter and his panel of experts: Describe the range of rapid microbiological methods and their applications, including practical tips, and their status regarding validation, established use, and regulatory acceptance Explore the origins of current methods and the current issues facing the requirements of microbiology and its associated test methods Delineate the challenges involved in seeking better and more pragmatic methods for the assessment of microbial hazards and risks to ensure product and consumer safety The book assists you in applying an effective system to assess the real microbiological hazards and, hence, quantify realistic risks. Additionally, it provides monitoring methods that will deliver meaningful, useful data for effective decision making in manufacturing, quality assurance, and product safety. The expert and authoritative information in Rapid Microbiological Methods in the Pharmaceutical Industry will help you find better solutions to ensuring the microbiological safety of pharmaceutical products. Features
The fascinating, untold story of the air we breathe, the hidden life it contains, and invisible dangers that can turn the world upside down Every day we draw in two thousand gallons of air—and thousands of living things. From the ground to the stratosphere, the air teems with invisible life. This last great biological frontier remains so mysterious that it took over two years for scientists to finally agree that the Covid pandemic was caused by an airborne virus. In Air-Borne, award-winning New York Times columnist and author Carl Zimmer leads us on an odyssey through the living atmosphere and through the history of its discovery. We travel to the tops of mountain glaciers, where Louis Pasteur caught germs from the air, and follow Amelia Earhart and Charles Lindbergh above the clouds, where they conducted groundbreaking experiments. We meet the long-forgotten pioneers of aerobiology including William and Mildred Wells, who tried for decades to warn the world about airborne infections, only to die in obscurity. Air-Borne chronicles the dark side of aerobiology with gripping accounts of how the United States and the Soviet Union clandestinely built arsenals of airborne biological weapons designed to spread anthrax, smallpox, and an array of other pathogens. Air-Borne also leaves readers looking at the world with new eyes—as a place where the oceans and forests loft trillions of cells into the air, where microbes eat clouds, and where life soars thousands of miles on the wind. Weaving together gripping history with the latest reporting on Covid and other threats to global health, Air-Borne surprises us on every page as it reveals the hidden world of the air.
This book is published on behalf of the Biological Stain
Commission.
Every spring, the University of Massachusetts - Amherst welcomes all ''Soils Conference" Scientific Advisory Board members with open arms as we begin the planning process responsible for bringing you quality conferences year after year. With this "homecoming" of sorts comes the promise of reaching across the table and interacting with a wide spectrum of stakeholders, each of them bringing their unique perspective in support of a successful Conference in the fall. This year marks the 20 DEGREES DEGREES anniversary of what started as a couple of thoughtful scientists interested in developing partnerships that together could fuel the environmental cleanup dialogue. Since the passage of the Superfund Law, regulators, academia and industry have come to realize that models that depend exclusively on ''command and control" mandates as the operative underpinning limit our collective ability to bring hazardous waste sites to productive re-use. It is with this concern in mind that the Massachusetts Department of Environmental Protection privatized its cleanup program in 1993, spurring the close-out of over 20,000 sites and spills across the Commonwealth to date, in a manner that is both protective of human health and the environment while also flexible and responsive to varied site uses and redevelopment goals. So we gather together again, this year, to hear our collective stories and share success and challenges just as we share stories at a family gathering. Take a read through the stories contained in these proceedings. |
You may like...
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Biocontrol Mechanisms of Endophytic…
Radhakrishnan E.K, Ajay Kumar, …
Paperback
R3,015
Discovery Miles 30 150
Advances in Applied Microbiology, Volume…
Allen I. Laskin, Geoffrey M. Gadd, …
Hardcover
R2,997
Discovery Miles 29 970
The Human Microbiome in Early Life…
Omry Koren, Samuli Rautava
Paperback
R3,021
Discovery Miles 30 210
Imaging Bacterial Molecules, Structures…
Colin Harwood, Grant Jensen
Hardcover
R4,585
Discovery Miles 45 850
Recent Trends in Biofilm Science and…
Manuel Simoes, Anabel Borges, …
Paperback
R3,031
Discovery Miles 30 310
Biology of Mycobacterial Lipids
Zeeshan Fatima, Stephane Canaan
Paperback
R3,446
Discovery Miles 34 460
Microbial Biomolecules - Emerging…
Ajay Kumar, Muhammad Bilal, …
Paperback
R3,704
Discovery Miles 37 040
Unravelling Plant-Microbe Synergy
Dinesh Chandra, Pankaj Bhatt
Paperback
R3,433
Discovery Miles 34 330
|