![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
This second edition is fully updated throughout and covers the emerging evidence that indicates that the Gadd45 family of proteins plays a unique and critical role as sensors of stress, including genotoxic, physiological, and oncogenic stress. It sheds light on the complex cellular stress response, encompassing myriad molecular pathways with a plethora of regulators and effectors. The GADD45 stress response genes encode small (18 kd) nuclear/cytoplasmic proteins. These genes are rapidly induced by a wide variety of endogenous and exogenous stress stimuli. Despite marked similarities, Gadd45 genes are regulated differentially and exhibit functional diversity. Gadd45 proteins respond to physiological and oncogenic stress, and are implicated in cell cycle arrest, DNA demethylation and repair, apoptosis, cell survival, genomic stability, and inflammation. The purpose of this book is to provide a comprehensive overview of the unique global role that Gadd45 proteins play as stress sensors and the molecular pathways involved.
This book aims to advance the understanding of deubiquitinases (DUBs) and DUB-like enzymes. Chapters detail methods used to identify, classify,and biochemically characterize DUBs along with approaches that enable both the determination and alteration of DUB biological function.. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Deubiquitinases: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
Toxic substances threatens aquatic and terrestrial ecosystems and ultimately human health. The book is a thoughtful effort in bringing forth the role of biotechnology for bioremediation and restoration of the ecosystems degraded by toxic and heavy metal pollution. The introductory chapters of the book deal with the understanding of the issues concerned with the pollution caused by toxic elements and heavy metals and their impacts on the different ecosystems followed by the techniques involved in monitoring of the pollution. These techniques include use of bio-indicators as well as modern techniques for the assessment and monitoring of toxicants in the environment. Detailed chapters discussing the role of microbial biota, aquatic plants, terrestrial plants to enhance the accumulation efficiency of these toxic and heavy metals are followed by remediation techniques involving myco-remediation, bio-pesticides, bio-fertilizers, phyto-remediation and rhizo-filtration. A sizable portion of the book has been dedicated to the advanced bio-remediation techniques which are finding their way from the laboratory to the field for revival of the degraded ecosystems. These involve bio-films, micro-algae, genetically modified plants and filter feeders. Furthermore, the book is a detailed comprehensive account for the treatment technologies from unsustainable to sustainable. We believe academicians, researchers and students will find this book informative as a complete reference for biotechnological intervention for sustainable treatment of pollution.
This book is published on behalf of the Biological Stain
Commission.
ANOXIA defines the lack of free molecular oxygen in an environment. In the presence of organic matter, anaerobic prokaryotes produce compounds such as free radicals, hydrogen sulfide, or methane that are typically toxic to aerobes. The concomitance of suppressed respiration and presence of toxic substances suggests these habitats are inhospitable to Eukaryota. Ecologists sometimes term such environments 'Death Zones'. This book presents, however, a collection of remarkable adaptations to anoxia, observed in Eukaryotes such as protists, animals, plants and fungi. Case studies provide evidence for controlled beneficial use of anoxia by, for example, modification of free radicals, use of alternative electron donors for anaerobic metabolic pathways, and employment of anaerobic symbionts. The complex, interwoven existence of oxic and anoxic conditions in space and time is also highlighted as is the idea that eukaryotic inhabitation of anoxic habitats was established early in Earth history.
Yeasts are the world’s premier industrial micro-organisms. In addition to their wide exploitation in the production of foods, beverages and pharmaceuticals, yeasts also play significant roles as model eukaryotic cells in furthering our knowledge in the biological and biomedical sciences. In order for modern biotechnology to fully exploit the activities of yeasts, it is essential to appreciate aspects of yeast cell physiology. In recent years, however, our knowledge of yeast physiological phenomena has lagged behind that of yeast genetics and molecular biology. Yeast Physiology and Biotechnology redresses the balance by linking key aspects of yeast physiology with yeast biotechnology. Individual chapters provide broad and timely coverage of yeast cytology, nutrition, growth and metabolism - important aspects of yeast cell physiology which are pertinent to the practical uses of yeasts in industry. The final chapter reviews traditional, modern and emerging biotechnologies in which roles of yeasts in the production of industrial commodities and their value in biomedical research are fully discussed. Relevant aspects of classical and modern yeast genetics and molecular biology are fully integrated into the appropriate chapters. This up-to-date and fully referenced book is aimed at advanced undergraduate and postgraduate bioscience students,but will also prove to be a valuable source of information for yeast researchers and technologists.
Every spring, the University of Massachusetts - Amherst welcomes all ''Soils Conference" Scientific Advisory Board members with open arms as we begin the planning process responsible for bringing you quality conferences year after year. With this "homecoming" of sorts comes the promise of reaching across the table and interacting with a wide spectrum of stakeholders, each of them bringing their unique perspective in support of a successful Conference in the fall. This year marks the 20 DEGREES DEGREES anniversary of what started as a couple of thoughtful scientists interested in developing partnerships that together could fuel the environmental cleanup dialogue. Since the passage of the Superfund Law, regulators, academia and industry have come to realize that models that depend exclusively on ''command and control" mandates as the operative underpinning limit our collective ability to bring hazardous waste sites to productive re-use. It is with this concern in mind that the Massachusetts Department of Environmental Protection privatized its cleanup program in 1993, spurring the close-out of over 20,000 sites and spills across the Commonwealth to date, in a manner that is both protective of human health and the environment while also flexible and responsive to varied site uses and redevelopment goals. So we gather together again, this year, to hear our collective stories and share success and challenges just as we share stories at a family gathering. Take a read through the stories contained in these proceedings.
This thoroughly revised and updated reference provides comprehensive coverage of the latest developments and scientific advances in dairy microbiologya "emphasizing probiotics, fermented dairy products, disease prevention, and public health and regulatory control standards for dairy foods. Containing more than 2350 bibliographic citations, tables, drawings and photographsa "550 more than the previous editiona "Applied Dairy Microbiology, Second Edition is an invaluable reference for all food and dairy microbiologists, scientists, and technologists; toxicologists; food processors; sanitarians; dietitians; epidemiologists; bacteriologists; public health and regulatory personnel; and veterinarians; and an important text for upper-level undergraduate, graduate, and continuing-education students in these disciplines. A-
A holistic approach covering a wide range of environmental microbial applications along with current and future trends In Microbial Biotechnology: Role in Ecological Sustainability and Research, a team of distinguished researchers delivers an authoritative overview of the role of microbial biotechnology in the pursuit of environmental and ecological sustainability. The book provides readers with compelling presentations of microbial technology, including its applications in the removal of environmental pollutants, and sustainable agriculture using microbial biocontrol agents or bio-fertilizers. Readers will also be able to explore the microbial reduction of greenhouse gases and a wide range of other cutting-edge applications, including the removal of various toxic environmental contaminants, such as antibiotics, pesticides, dyes, and heavy metals. Microbial Biotechnology provides: A thorough introduction to microorganisms, their metabolic engineering, the human microbiome, and other foundational topics An in-depth exploration of environmental management, including bioremediation through a nexus approach A fulsome treatment of current trends in microbial biotechnology and its role in sustainable production Perfect for professionals in applied microbiology, biotechnology, environmental engineering, green chemistry, and soil science, Microbial Biotechnology: Role in Ecological Sustainability and Research will also earn a place in the libraries of research scholars, scientists, and academicians with an interest in environmental microbiology and ecology.
Principles of Microbiological Troubleshooting in the Industrial Food Processing Environment provides proven approaches and suggestions for finding sources of microbiological contamination of industrially produced products.Industrial food safety professionals find themselves responsible for locating and eliminating the source(s) of food contamination. These are often complex situations for which they have not been adequately prepared. This book is written with them, the in-plant food safety/quality assurance professional, in mind. However, other professionals will also benefit including plant managers, regulatory field investigators, technical food safety policy makers, college instructors, and students of food science and microbiology. A survey of the personal and societal costs of microbial contamination of food is followed by a wide range of respected authors who describe selected bacterial pathogens, emerging pathogens, spoilage organisms and their significance to the industry and consumer. Dr. Kornacki then provides real life examples of in-plant risk areas / practices (depicted with photographs taken from a wide variety of food processing facilities). Factors influencing microbial growth, survival and death area also described. The reader will find herein a practical framework for troubleshooting and for assessing the potential for product contamination in their own facilities, as well as suggestions for conducting their own in-plant investigations. Selected tools for testing the environment and statistical approaches to testing ingredients and finished product are also described. The book provides suggestions for starting up after a processing line (or lines) have been shut down due to a contamination risk. The authors conclude with an overview of molecular subtyping and its value with regard to in-plant investigations. Numerous nationally recognized authors in the field have contributed to the book. The editor, Dr. Jeffery L. Kornacki, is President and Senior Technical Director of the consulting firm, Kornacki Microbiology Solutions in Madison, Wisconsin. He is also Adjunct Faculty with the Department of Food Science at the University of Georgia and also with the National Food Safety & Toxicology Center at Michigan State University.
Cellular microbiology is an exciting new area of microbiology research which bridges the gap between microbiology and cell biology. Drawing on their own teaching and research experience, the authors have provided a timely and comprehensive introduction to the molecular and cellular biology of bacterial interactions with host cells, and their relevance to human diseases. Cellular Microbiology introduces the key concepts of prokaryotic and eukaryotic cell biology, cell signalling mechanisms and current molecular biological techniques used in cellular microbiology before describing how bacteria interact with host eukaryotic cells during infections and health, and explaining the interactions with the immune system which enable an individual to recover from infections. This book will be invaluable to advanced undergraduate and postgraduate students studying microbiology, virology, pathology, pharmacology and cell biology. It will also be useful for those researchers interested in bacterial infection.
The common bean Phaseolus vulgaris L. is the most important pulse crop in Latin America, as well as in large parts of Asia and Africa. It is particularly important due to its ability, in symbiosis with Rhizobium bacteria, to fix atmospheric nitrogen and due to its high nutrient value. Incorporating contributions from plant breeders, microbiologists, plant physiologists and soil scientists, this volume reports the results of an FAO/IAEA Coordinated Research Programme (1985-1991), whose main objective was to enhance yield and biological nitrogen fixation in the common bean by reducing its reliance on soil and fertilizer nitrogen. The volume should be useful for scientists working on biological nitrogen fixation and legume production.
The development of biofilms and their role in public health - particularly drinking water - is often overlooked. Ideal for anyone interested in water related issues, Microbiological Aspects of Biofilms and Drinking Water presents an overview of the public health effects associated with drinking water. It highlights the microbiological aspects relating to the development of biofilms.
Examining intercellular infections in certain plant species that lead to a symbiotic relationship between the host and its endophytic microbes, this volume demonstrates the ability of many types of endosymbionts, acting as a unit with hosts to better survive, compete and reproduce. Practical applications of such endophytes are also discussed, for example, pharmaceutical developments and agricultural management.
"Essential Microbiology 2nd Edition" is a fully revised comprehensive introductory text aimed at students taking a first course in the subject. It provides an ideal entry into the world of microorganisms, considering all aspects of their biology (structure, metabolism, genetics), and illustrates the remarkable diversity of microbial life by devoting a chapter to each of the main taxonomic groupings. The second part of the book introduces the reader to aspects of applied microbiology, exploring the involvement of microorganisms in areas as diverse as food and drink production, genetic engineering, global recycling systems and infectious disease. Essential Microbiology explains the key points of each topic but avoids overburdening the student with unnecessary detail. Now in full colour it makes extensive use of clear line diagrams to clarify sometimes difficult concepts or mechanisms. A companion web site includes further material including MCQs, enabling the student to assess their understanding of the main concepts that have been covered. This edition has been fully revised and updated to reflect the developments that have occurred in recent years and includes a completely new section devoted to medical microbiology. Students of any life science degree course will find this a concise and valuable introduction to microbiology.
The Plasmodium spp. parasite was identified as the causative agent of malaria in 1880, and the mosquito was identified as the vector in 1897. Despite subsequent efforts focused on the epidemiology, cell biology, immunology, molecular biology, and clinical manifestations of malaria and the Plasmodium parasite, there is still no licensed vaccine for the prevention of malaria. Physical barriers (bed nets, window screens) and chemical prevention methods (insecticides and mosquito repellents) intended to interfere with the transmission of the disease are not highly effective, and the profile of resistance of the parasite to chemoprophylactic and chemotherapeutic agents is increasing. The dawn of the new millennium has seen a resurgence of interest in the disease by government and philanthropic organizations, but we are still faced with compl- ities of the parasite, the host, and the vector, and the interactions among them. Malaria Methods and Protocols offers a comprehensive collection of protocols describing conventional and state-of-the-art techniques for the study of malaria, as well as associated theory and potential problems, written by experts in the field. The major themes reflected here include assessing the risk of infection and severity of disease, laboratory models, diagnosis and typing, molecular biology techniques, immunological techniques, cell biology techniques, and field applications.
Nontarget Effects of Biological Control is the first book of its kind. The environmental safety of biological control has come under scrutiny due to several areas of concerns: the irreversibility of alien introductions, the prevalence of host switching to innocuous native or beneficial species, dispersal of the biocontrol agent to new habitats away from croplands, and the lack of research on the efficacy and impact of biocontrol attempts. The debate has been strongly polarized between conservationists and biological control practitioners. Nontarget Effects of Biological Control proposes that retrospective analyses of systems in place in which nontarget effects are now documented or suspected provide the necessary information for planning and evaluating future releases to reduce risk. The book presents case histories of past biological control introductions from island and continental ecosystems.
This detailed volume provides scientists interested in quorum sensing with a broad spectrum of methods and protocols useful for studying bacterial communication processes at the chemico-physical, molecular, and physiological level. Divided into three sections, the content covers detection and quantification of quorum sensing signal molecules, methods for the studying of quorum sensing at the molecular, physiological, and population level, as well as identification and characterization of anti-quorum sensing agents. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Quorum Sensing: Methods and Protocols serves as a comprehensive guide to the most important methodology currently available in the field.
Microbiological tests have proven to be an indispensable part of environmental contaminant detection. It has also been tremendously difficult to find a comprehensive training manual and laboratory manual for those procedures.
A clarion call to save humanity's most essential fellow creatures - and our health Far beneath our skin exists an unfathomable, ancient universe - an internal ecosystem that is critical to our health. Dr Martin Blaser invites us into the wilds of the human 'microbiome', unfurling its inner workings and evolution. For thousands of years, bacteria and human cells have co-existed in a relationship that has ensured the health and equilibrium of our body. But now, much like the natural world outside of us, our internal environment is being irrevocably destroyed. The culprit: some of our most revered medical advances - antibiotics - which appear to be linked to the epidemics of asthma, eczema, obesity, certain forms of cancer, and other diseases plaguing modern society. In a book that stands as the Silent Spring of its day, Blaser sounds a provocative alarm that we ignore at our peril.
This work sheds new light on the interplay between the gut, gut microbiota, and host physiological processes in production animals. The gut microbiome shapes health and susceptibility to disease and has become a leading area of research in the animal sciences. Gut health encompasses a number of physiological and functional features. Nutrient digestion and absorption, host metabolism and energy generation, a stable microbiome, mucus layer development, barrier function, and mucosal immune responses; all of which are required to interact to make an animal perform physiologically and according to its greatest genetic potential. This carefully presented book broadens our vision, approach and results on gut health and the ability to regulate animal production. Understanding the chemistry of microbiomes has broad implications, including providing functional annotations for the microbial genomes, insights into the chemical languages that link microbes to each other and to their host, and translational implications for precision veterinary medicine, environmental health, and sustainable animal agriculture and welfare. Experts working in microbiome research, host immunity, and animal production, veterinarians and researchers in livestock science will understand the great importance of this volume.
Late-1990s developments in the study of thermophiles have had
considerable significance on theories of evolution. These
micro-organisms are able to thrive at temperatures near or even
above 100 degrees Celsius, and scientists have begun to study their
biology in an attempt to provide clues about the beginnings of life
on our planet.
Systems-Level Modelling of Microbial Communities: Theory and Practice introduces various aspects of modelling microbial communities and presents a detailed overview of the computational methods which have been developed in this area. This book is aimed at researchers in the field of computational/systems biology as well as biologists/experimentalists studying microbial communities, who are keen on embracing the concepts of computational modelling. The primary focus of this book is on methods for modelling interactions between micro-organisms in a community, with special emphasis on constraint-based and network-based modelling techniques. A brief overview of population- and agent-based modelling is also presented. Lastly, it covers the experimental methods to understand microbial communities, and provides an outlook on how the field may evolve in the coming years. |
You may like...
Biology of Mycobacterial Lipids
Zeeshan Fatima, Stephane Canaan
Paperback
R3,446
Discovery Miles 34 460
Synergistic Approaches for…
Riti Thapar Kapoor, Maulin P. Shah
Paperback
R3,460
Discovery Miles 34 600
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,094
Discovery Miles 30 940
Microbial Management of Plant Stresses…
Ajay Kumar, Samir Droby
Paperback
R3,998
Discovery Miles 39 980
The Human Microbiome in Early Life…
Omry Koren, Samuli Rautava
Paperback
R3,021
Discovery Miles 30 210
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
Microbial Biomolecules - Emerging…
Ajay Kumar, Muhammad Bilal, …
Paperback
R3,704
Discovery Miles 37 040
|