![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
The "Practical Food Microbiology Series" gives practical and
accurate information about specific organisms of concern to public
health. The information is designed for use by those in the food
industry working in manufacturing, retailing and quality assurance,
those in associated professional sectors e.g. public health, and
students in each of these areas. "Clostridium botulinum" produces a toxin which causes the
severe, often fatal illness, botulism. It is a potential hazard
associated with a wide range of both ambient stable and chilled
foods. Foodborne botulism still occurs all around the world. As new outbreaks are reported implicating yet more food types and food processes, so the food industry needs to regularly review processes and product characteristics to assure safety.
Rice blast, caused by the fungal pathogen Magnaporthe grisea, is one of the most destructive rice diseases worldwide and destroys enough rice to feed more than 60 million people annually. Due to high variability of the fungal population in the field, frequent loss of resistance of newly-released rice cultivars is a major restraint in sustainable rice production. In the last few years, significant progress has been made in understanding the defense mechanism of rice and pathogenicity of the fungus. The rice blast system has become a model pathosystem for understanding the molecular basis of plant-fungal interactions due to the availability of both genomes of rice and M. grisea and a large collection of genetic resources. This book provides a complete review of the recent progress and achievements on genetic, genomic and disease control of the disease. Most of the chapters were presented at the 4th International Rice Blast Conference held on October 9-14, 2007 in Changsha, China. This book is a valuable reference not only for plant pathologists and breeders working on rice blast but also for those working on other pathysystems in crop plants.
In nature, microorganisms are generally found attached to surfaces as biofilms such as dust, insects, plants, animals and rocks, rather than suspended in solution. Once a biofilm is developed, other microorganisms are free to attach and benefit from this microbial community. The food industry, which has a rich supply of nutrients, solid surfaces, and raw materials constantly entering and moving through the facility, is an ideal environment for biofilm development, which can potentially protect food pathogens from sanitizers and result in the spread of foodborne illness. Biofilms in the Food Environment is designed to provide researchers in academia, federal research labs, and industry with an understanding of the impact, control, and hurdles of biofilms in the food environment. Key to biofilm control is an understanding of its development. The goal of this 2nd edition is to expand and complement the topics presented in the original book. Readers will find: * The first comprehensive review of biofilm development by Campylobacter jejuni * An up-date on the resistance of Listeria monocytogenes to sanitizing agents, which continues to be a major concern to the food industry * An account of biofilms associated with various food groups such as dairy, meat, vegetables and fruit is of global concern * A description of two novel methods to control biofilms in the food environment: bio-nanoparticle technology and bacteriophage Biofilms are not always a problem: sometimes they even desirable. In the human gut they are essential to our survival and provide access to some key nutrients from the food we consume. The authors provide up-date information on the use of biofilms for the production of value-added products via microbial fermentations. Biofilms cannot be ignored when addressing a foodborne outbreak. All the authors for each chapter are experts in their field of research. The Editors' hope is that this second edition will provide the bases and understanding for much needed future research in the critical area of Biofilm in Food Environment .
Extremophiles are life-forms that thrive under some of the harshest conditions found on Earth. In recent years, extremophiles have been discovered in such inhospitable places as active volcanoes, deep sea vents, and the ultrasaline remnants of extinct inland seas. Extensive studies of extremophile ecology, physiology, and molecular biology have yielded valuable information about life processes at every level, with a number of important industrial applications. Extremophiles: Microbial Life in Extreme Environments provides a detailed overview of the current state of knowledge about this fascinating group of life-forms. Over the course of eleven contributed chapters, twenty-six experts from around the globe identify known extremophiles, explore their unique ecologies and physiologies, and discuss current and future biotechnological applications. Providing the most up-to-date coverage currently available of a rapidly advancing field, Extremophiles: Microbial Life in Extreme Environments:
An indispensable working resource for industrial microbiologists and molecular biologists, Extremophiles: Microbial Life in Extreme Environments is also a thought-provoking and accessible introduction to the field for all interested scientists.
This succinct volume addresses the production of inactive, potentially toxic proteins in the absence of correct protein folding and the resultant neurodegenerative diseases. Other topics include intrinsic disorder in protein structure and function and the effects of molten globules on protein toxicity. This concise and yet thorough text also discusses using toxin structure as a model for studying structural and functional aspects of protein chemistry. Protein Toxins in Modeling Biochemistry, a SpringerBrief, is essential reading for advanced researchers, scientists and advanced graduate students interested in protein chemistry and related areas of biochemistry and molecular science.
Fungi produce many chemically diverse secondary metabolites whose biological roles largely remain elusive. Within the increasing number of sequenced fungal genomes several important genes involved in secondary metabolite formation have been identified. Most of these genes are clustered and their coordinated transcription is controlled in a complex way by both narrow pathway-specific regulators as well as broad global transcription factors responsive to environmental cues. In recent years it was discovered many of the newly identified gene clusters are silent under laboratory conditions suggesting that the biosynthetic potential of fungi is far from being exploited. Besides identifying novel bioactive metabolites from still unexplored sources, the activation of these gene clusters by several approaches may result in the discovery of new substances with antibiotic and pharmaceutical benefits. This book covers recent advances in the field of fungal secondary metabolisms ranging from methodologies to biological aspects and will include the latest knowledge on fungal molecular biology, genomics, and metabolomics. With the related volume by Professor Juan-Francisco Martin, where the most relevant and well-studied fungal secondary metabolites are compiled, this book provides a comprehensive overview of the state-of-the-art of research on fungal secondary metabolites.
This book contains a collection of critical reviews on the expression of biologically functional proteins in Leishmania and Trypanosoma, which was written by renowned researchers on this field. Species belonging to these trypanosomatids’ genera are etiological agents of leishmaniasis, Chagas’ disease and sleeping sickness that are extremely debilitating human infection diseases, which remain a major health problem especially in countries from Latin America, Africa and Middle East. Substantiating the problem, the currently accepted drugs for these diseases are quiet unsatisfying due to their low efficacy and high toxicity. In order to solve these real problems, several research groups around the world have become involved in the study and identification of novel potential targets in the trypanosomatid cell. Since proteins are key macromolecules involved in crucial metabolic processes of all living cells, studies have focused on the expression of specific proteins produced by Leishmania and Trypanosoma by means of different biochemical, molecular and proteomic approaches in order to explore them as targets for understanding the parasite life cycle and developing new strategies against trypanosomiasis. With these proposals in mind, the book “Proteins and Proteomics of Leishmania and Trypanosoma†encompasses (i) an integrated view about the biochemistry of parasites belonging to the Leishmania and Trypanosoma genera; (ii) an updated review on the expression of biologically relevant proteins by human pathogenic trypanosomatids and their possible role in the interaction with host cells/molecules as well as a target for development of both alternative chemotherapies and vaccine; and (iii) several pictures, diagrams and tables that can be used to illustrate both undergraduate and postgraduate teaching as well as scientific lectures, being a useful resource for students and researchers.
Microbial physiology, biochemistry and genetics allowed the formulation of concepts that turned out to be important in the study of higher organisms. In the first section, the principles of bacterial growth are given, as well as the description of the different layers that enclose the bacterial cytoplasm, and their role in obtaining nutrients from the outside media through different permeability mechanism described in detail. A chapter is devoted to allostery and is indispensable for the comprehension of many regulatory mechanisms described throughout the book. Another section analyses the mechanisms by which cells obtain the energy necessary for their growth, glycolysis, the pentose phosphate pathway, the tricarboxylic and the anaplerotic cycles. Two chapters are devoted to classes of microorganisms rarely dealt with in textbooks, namely the Archaea, mainly the methanogenic bacteria, and the methylotrophs. Eight chapters describe the principles of the regulations at the transcriptional level, with the necessary knowledge of the machineries of transcription and translation. The next fifteen chapters deal with the biosynthesis of the cell building blocks, amino acids, purine and pyrimidine nucleotides and deoxynucleotides, water-soluble vitamins and coenzymes, isoprene and tetrapyrrole derivatives and vitamin B12. The two last chapters are devoted to the study of protein-DNA interactions and to the evolution of biosynthetic pathways. The considerable advances made in the last thirty years in the field by the introduction of gene cloning and sequencing and by the exponential development of physical methods such as X-ray crystallography or nuclear magnetic resonance have helped presenting metabolism under a multidisciplinary attractive angle.
Yeast Protocols, Third Edition presents up-to-date advances in research using yeasts as models. Chapters cover topics such as basic protocols in yeast culture and genomic manipulation, protocols that study certain organelles such as mitochondria and peroxisomes and their functions in autophagy and assays commonly used in yeast-based studies that can be adapted to other organisms. As the first sequenced living organism, budding yeast S. cerevisiae and other model yeasts have helped greatly in life science research. The easy switch between the haploid and diploid state makes yeast a paradigm of genetic manipulation. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Yeast Protocols, Third Edition seeks to serve both professionals and novices with newly-developed protocols to study this essential model organism.
This volume presents the issues and challenges of crop pathogens and plant protection. Composed of the latest knowledge in plant pathology, the book covers topics such as fungal diseases of the groundnut, plant growth promoting rhizobacteria, plant pathogenic fungi in the genomics era, the increased virulence of wheat rusts and oat fungal diseases. Written by experienced and internationally recognized scientists in the field, Future Challenges in Crop Protection Against Fungal Pathogens is a concise yet comprehensive resource valuable for both novice as well as experienced plant scientists and researchers.
The earth’s biodiversity is a degree of ecosystem health which is vital to ecology and environmental sustainability. The microbial world is the largest unexplored reservoir. The agro-ecosystem enriched with rhizosphere implicit abundant and species-rich component of microbial diversity. Its global exploration designs a worldwide framework for agricultural sustainability adjoining benefits in its conservation. Agricultural sustainability requires a major share from ecosystem management which is better paid by microbial diversity and conservation. Diversity of bacteria influences plant productivity providing nutrient convenience from soil instead altering per se community and diversity in the rhizosphere where they may influence mechanistic competent and antagonistic micro-flora. The potential species among the diversity are therefore, essential subjective to their maintenance for use around the globe. Microbial population in agro-ecosystem is influenced by stresses, reduce functionality as a component. It is therefore, important to explore secrets of planned strategy so as to unravel the microbial diversity and conservation in agricultural development. Microorganisms are minute, pervasive in nature and alleged as disease host instead tiny recognize as employee of agro-ecosystem, indulge in agricultural development and potential contributor in world of ecological and economical wealth creation. This step pertinently would help to launch scientific motivation needed to support the refrain of microbial diversity and conservation.
This book provides an unprecedented overview of "Targeted Therapies" for acute myeloid leukemias. It aims at an almost comprehensive coverage of the diverse therapeutic strategies that have been developed during the last decade and are now being evaluated in early clinical trials. Paired and authoritative chapters by leading research scientists and clinicians explain basic concepts and clinical translation of topics that include the underlying genetic and proteomic abnormalities of AML, the development of novel nucleoside analogues, the roles of microRNAs, apoptosis regulators Bcl-2 and p53 and of critical cell signaling proteins such as PIM, FLT3, Raf/MEK, PI3K/AKT/mTOR and aurora kinases. Chapters on epigenetic mechanisms, nuclear receptors, cell surface antigens, the hypoxic leukemia microenvironment, stem cells and leukemia metabolism provide insights into leukemia cell vulnerabilities. Cell therapies utilizing T-, NK- and mesenchymal stem cells and progress in hematopoietic transplantation strategies round up this overview of the multi-dimensional therapeutic landscape in which leukemia specialists develop treatment strategies that are expected to make "leukemia history" in the near future.
This book provides a detailed description and analysis of the reduction and metabolism of metals and metalloids by sulfate reducing bacteria. The molecular mechanisms of bacterial resistance to copper are examined as well as extracellular electron transfer and bacterial metal oxide respiration. Furthermore, in this book enrichment, isolation, and physiology of magnetotactic bacteria are discussed. The interactions of bacteria with metals in natural environments and their role in metal cycling have been studied for decades. Advances in studies of bacteria-metal interactions identified numerous important aspects of these interactions, such as bioremediation of metal-contaminated environments, the role of metals in redox reactions and other cellular functions, as well as the role of metals in toxicity and infection. Microbiologists, environmental scientists, and students interested in microbe interactions with metals and their effect on the environment and their application in biotechnology will be interested in the topics discussed in the book.
An up-to-date view of molecular mechanisms for investigating microbial communities and their biological activities, this new volume of Environmental Microbiology: Methods and Protocols looks at recent advances that are having a big impact on the field such as metagenomics and other "omics" technologies, NanoSIMS, as well as stable isotope probing and more. Conveniently divided into four parts, the first section looks at methods involved in sampling environmental microorganisms, the second profiles different methods for investigating the diversity and composition of microbial communities, the third focuses on techniques for analyzing biological activities in situ, and the final section examines high throughput "omics" approaches for the characterization of environmental microbial communities. This book was written as part of the highly successful Methods in Molecular Biology series, and, as such, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Fully updated and authoritative, Environmental Microbiology: Methods and Protocols, Second Edition aims to provide an unprecedented glimpse into the structure, composition, and activity of microbial communities across diverse environments and illuminate their impact on global ecological processes.
Enzyme Technology is one the most promising disciplines in modern biotechnology. In this book, the applications of a wide variety of enzymes are highlighted. Current studies in enzyme technology are focused towards the discovery of novel enzymes (termed "bio-discovery" or "bio-prospecting") and the identification and elucidation of novel pathways of these novel enzymes with emphasis on their industrial relevance. With the development of molecular techniques and other bioinformatics tools, the time to integrate this subject with other fields in the life sciences has arrived. A rapid expansion of the knowledge base in the field of enzyme biotechnology has occurred over the past few years. Much of this expansion has been driven by the bio-discovery of many new enzymes from a wide range of environments, some extreme in nature, followed by subsequent protein (enzyme) engineering. These enzymes have found a wide range of applications, ranging from bioremediation, bio-monitoring, biosensor development, bioconversion to biofuels and other biotechnologically important value-added products. Hydrolases constitute a major component of the global annual revenue generated by industrial enzymes and the emphasis has therefore been placed on these enzymes and their applications. With the immense interest of researchers active in this area, this book will serve to provide information on current aspects in this field of study. In the current edition, the contributions of many diversified topics towards establishing new directions of research in the area of enzyme biotechnology are described. This book serves to provide a unique source of information to undergraduates, post graduates and doctoral courses in microbiology and biotechnology along with allied life sciences. The present edition of the book covers all important areas of enzyme biotechnology i.e. the wide variety of enzymes in the field of enzyme biotechnology and their industrial applications, new methods and state-of-the-art information on modern methods of enzyme discovery. This book will act as good resource on most of the current facets of enzyme technology for all students engaged in bioengineering and biotechnology.
Next Generation Sequencing: Chemistry, Technology and Applications, by P. Hui Application of Next Generation Sequencing to Molecular Diagnosis of Inherited Diseases, by W. Zhang, H. Cui, L.-J.C. Wong Clinical Applications of the Latest Molecular Diagnostics in Noninvasive Prenatal Diagnosis, by K.C.A. Chan The Role of Protein Structural Analysis in the Next Generation Sequencing Era, by W.W. Yue, D.S. Froese, P.E. Brennan Emerging Applications of Single-Cell Diagnostics, by M. Shirai, T. Taniguchi, H. Kambara Mass Spectrometry in High-Throughput Clinical Biomarker Assays: Multiple Reaction Monitoring, by C.E. Parker, D. Domanski, A.J. Percy, A.G. Chambers, A.G. Camenzind, D.S. Smith, C.H. Borchers Advances in MALDI Mass Spectrometry in Clinical Diagnostic Applications, by E.W.Y. Ng, M.Y.M. Wong, T.C.W. Poon Application of Mass Spectrometry in Newborn Screening: About Both Small Molecular Diseases and Lysosomal Storage Diseases, by W.-L. Hwu, Y.-H. Chien, N.-C. Lee, S.-F. Wang, S.-C. Chiang, L.-W. Hsu
Reflecting the development of powerful new tools and high-throughput methods to analyze adenoviral particles and their interactions with host cells, the third edition of Adenovirus Methods and Protocols calls upon experts in the field to convey advances in molecular biology, genomics and proteomics, imaging, and bioinformatics. Beginning with cryo-electron microscopy, atomic force microscopy, and mass spectrometry for a high resolution image and characterization of the virion, this detailed book then continues with capsid modifications and viral-like particles as promising alternatives to classical adenovirus vectors, and the study of adenovirus in host interactions in vitro at the cellular level as well as in vivo in animal models. Finally, the volume concludes with an extensive update of the most efficient protocols to generate, amplify, and/or purify, at small and large scale, standard human Ad5 as well as non-human, chimeric, and helper-dependent adenovirus vectors. Written in the greatly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Adenovirus Methods and Protocols, Third Edition serves as an ideal guide for scientists continuing to research this highly valuable viral tool.
Plants and microbes interact in a complex relationship that can have both harmful and beneficial impacts on both plant and microbial communities. Effectors, secreted microbial molecules that alter plant processes and facilitate colonization, are central to understanding the complicated interplay between plants and microbes. Effectors in Plant-Microbe Interactions unlocks the molecular basis of this important class of microbial molecules and describes their diverse and complex interactions with host plants. Effectors in Plant Microbe Interactions is divided into five sections that take stock of the current knowledge on effectors of plant-associated organisms. Coverage ranges from the impact of bacterial, fungal and oomycete effectors on plant immunity and high-throughput genomic analysis of effectors to the function and trafficking of these microbial molecules. The final section looks at effectors secreted by other eukaryotic microbes that are the focus of current and future research efforts. Written by leading international experts in plant-microbe interactions, Effectors in Plant Microbe Interactions, will be an essential volume for plant biologists, microbiologists, pathologists, and geneticists.
Essential Microbiology 2nd Edition is a fully revised comprehensive introductory text aimed at students taking a first course in the subject. It provides an ideal entry into the world of microorganisms, considering all aspects of their biology (structure, metabolism, genetics), and illustrates the remarkable diversity of microbial life by devoting a chapter to each of the main taxonomic groupings. The second part of the book introduces the reader to aspects of applied microbiology, exploring the involvement of microorganisms in areas as diverse as food and drink production, genetic engineering, global recycling systems and infectious disease. Essential Microbiology explains the key points of each topic but avoids overburdening the student with unnecessary detail. Now in full colour it makes extensive use of clear line diagrams to clarify sometimes difficult concepts or mechanisms. A companion web site includes further material including MCQs, enabling the student to assess their understanding of the main concepts that have been covered. This edition has been fully revised and updated to reflect the developments that have occurred in recent years and includes a completely new section devoted to medical microbiology. Students of any life science degree course will find this a concise and valuable introduction to microbiology.
This comprehensive book details the most recent advances in the microalgae biological sciences and engineering technologies for biomass and biofuel production in order to meet the ongoing need for new and affordable sources of food, chemicals and energy for future generations. The chapters explore new microalgae cultivation techniques, including solid (biofilm) systems, and heterotrophic production methods, while also critically investigating topics such as combining wastewater as a source of nutrients, the effect of CO2 on growth, and converting biomass to methane through anaerobic digestion. The book highlights innovative bioproduct optimization and molecular genetic techniques, applications of genomics and metabolomics, and the genetic engineering of microalgae strains targeting biocrude production. The latest developments in microalgae harvesting and dewatering technologies, which combine biomass production with electricity generation, are presented, along with detailed techno-economic modeling. This extensive volume was written by respected experts in their fields and is intended for a wide audience of researchers and engineers.
Use of Microbes for the Alleviation of Soil Stresses, Volume 1 describes the most important details and advances related to the alleviation of soil stresses by soil microbes. Comprised of seven chapters, the book reviews the mechanisms by which plant growth promoting rhizobacteria (PGPR) alleviate plant growth under stress; the role of mycorrhizal fungi on the alleviation of drought stress in host plants; how PGPR may alleviate salinity stress on the growth of host plants; and the role of PGPR on the growth of the host plant under the stress of sub optimal root zone temperature. Written by experts in their respective fields, Use of Microbes for the Alleviation of Soil Stresses, Volume 1 is a comprehensive and valuable resource for researchers and students interested in the field of microbiology and soil stresses.
This volume illustrates the complex root system, including the various essential roles of roots as well as their interaction with diverse microorganisms localized in or near the root system. Following initial chapters describing the anatomy and architecture as well as the growth and development of root systems, subsequent chapters focus on the various types of root symbiosis with bacteria and fungi in the rhizosphere. A third section covers the physiological strategies of roots, such as nitrate assimilation, aquaporins, the role of roots in plant defense responses and in response to droughts and salinity changes. The book's final chapters discuss the prospects of applied engineering of roots, i.e., inventing new root structures or functions through genetic modification, but also with conventional breeding and manipulation of root symbionts. The budding field of root engineering is expected to promote a second green revolution.
The 'Advances in Plant Biopesticides' comprises 19 chapters on different important issues of developing biopesticides from promising botanicals and its phytomolecules based on the research reviews in the area concern. The book is written by reputed scientists and professors of both developed and developing countries namely Australia, Canada, Czech Republic, Egypt, Greece, India, Kenya, Thailand, Turkey, United Kingdom, and USA represented by almost 53 contributors. The book is organized and presented in such a form that the readers can acquire and enhance their knowledge in plant biopesticide bioresources, its application in different areas to manage pests and diseases of field crops, stored products with status of exploring in Africa, non-target effects on beneficial arthropods, control of arthropods of veterinary and vectors of communicable diseases, efficacy in controlling honeybee mite pests, prospect of applying new tools to enhance the efficacy of plant biopesticides through use of nanotechnology, most important plant derived active principle as source of biopesticides, possible mode of action of phytochemicals against arthropods, limitation, production status, consumption, formulation, registration and quality regulation of plant biopesticides and have been cited by important scientific references. Most importantly, the book also highlights a unique example for developing biopesticides based on the research on Annonaceae as potential source of plant biopesticide, exploiting phytochemicals for developing green technology for sustainable crop protection strategies to withstand climate change with example in Africa, and overview in developing insect resistance to plant biopesticides. Most of the chapter contributing authors are internationally reputed researchers and possess experiences of more than three to four decades in the area of plant biopesticides. The contributing and corresponding authors of the book - Advances in Plant Biopesticides proposed and identified by the editor (Dwijendra Singh) include distinguished professors and reputed scientists from different continents of the world namely MB Isman (Canada), Nadia Z Dimetry (Egypt), Zeaur R Khan (Kenya), John A Pickett (UK), Gadi VP Reddy (USA), S Gopalakrishnan (India), Anand Prakash (India), Chirantan Chattopadyay (India), Christos G Athanassiou (Greece), Philip C. Stevenson (UK), S Raguraman (India), S Ghosh (India), Mir S Mulla (USA), Apiwat Tawatsin (Thailand), Dwijendra Singh (India), K Sahayaraj (India), Suresh Walia (India), T Shivanandappa (India), Roman Pavela (Czeck Republic), Errol Hasan (Australia), Ayhan Gokce (Turkey), SK Raza (India), and their colleague co-contributors. This book would certainly provide the updated knowledge to global readers on plant biopesticides as one of the important reference source and would stimulate to present and future researchers, scientists, student, teachers, entrepreneurs, and government & non-government policy makers interested to develop new & novel environmentally safe plant biopesticides world over. |
You may like...
The Role of Public Sector in Local…
Maros Finka, Matej Jasso, …
Hardcover
R2,680
Discovery Miles 26 800
Fiscal Policy in Economic and Monetary…
Marco Buti, Daniele Franco
Hardcover
R3,923
Discovery Miles 39 230
e-Commerce - Dynamic markets perspective
K. Chipp, Z. Ismail, …
Paperback
R874
Discovery Miles 8 740
European Consumer Policy after…
N. Reich, Geoffrey Woodroffe
Hardcover
R4,194
Discovery Miles 41 940
Cross-Border E-Commerce Marketing and…
Md Rakibul Hoque, R Edward Bashaw
Hardcover
R5,432
Discovery Miles 54 320
Impact of Mobile Payment Applications…
Thaisaiyi Zephania Opati, Martin Kang'ethe Gachukia
Hardcover
R5,315
Discovery Miles 53 150
|