![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Image processing > General
The advances of live cell video imaging and high-throughput technologies for functional and chemical genomics provide unprecedented opportunities to understand how biological processes work in subcellularand multicellular systems. The interdisciplinary research field of Video Bioinformatics is defined by BirBhanu as the automated processing, analysis, understanding, data mining, visualization, query-basedretrieval/storage of biological spatiotemporal events/data and knowledge extracted from dynamic imagesand microscopic videos. Video bioinformatics attempts to provide a deeper understanding of continuousand dynamic life processes.Genome sequences alone lack spatial and temporal information, and video imaging of specific moleculesand their spatiotemporal interactions, using a range of imaging methods, are essential to understandhow genomes create cells, how cells constitute organisms, and how errant cells cause disease. The bookexamines interdisciplinary research issues and challenges with examples that deal with organismal dynamics,intercellular and tissue dynamics, intracellular dynamics, protein movement, cell signaling and softwareand databases for video bioinformatics.Topics and Features* Covers a set of biological problems, their significance, live-imaging experiments, theory andcomputational methods, quantifiable experimental results and discussion of results.* Provides automated methods for analyzing mild traumatic brain injury over time, identifying injurydynamics after neonatal hypoxia-ischemia and visualizing cortical tissue changes during seizureactivity as examples of organismal dynamics* Describes techniques for quantifying the dynamics of human embryonic stem cells with examplesof cell detection/segmentation, spreading and other dynamic behaviors which are important forcharacterizing stem cell health* Examines and quantifies dynamic processes in plant and fungal systems such as cell trafficking,growth of pollen tubes in model systems such as Neurospora Crassa and Arabidopsis* Discusses the dynamics of intracellular molecules for DNA repair and the regulation of cofilintransport using video analysis* Discusses software, system and database aspects of video bioinformatics by providing examples of5D cell tracking by FARSIGHT open source toolkit, a survey on available databases and software,biological processes for non-verbal communications and identification and retrieval of moth imagesThis unique text will be of great interest to researchers and graduate students of Electrical Engineering,Computer Science, Bioengineering, Cell Biology, Toxicology, Genetics, Genomics, Bioinformatics, ComputerVision and Pattern Recognition, Medical Image Analysis, and Cell Molecular and Developmental Biology.The large number of example applications will also appeal to application scientists and engineers.Dr. Bir Bhanu is Distinguished Professor of Electrical & C omputer Engineering, Interim Chair of theDepartment of Bioengineering, Cooperative Professor of Computer Science & Engineering, and MechanicalEngineering and the Director of the Center for Research in Intelligent Systems, at the University of California,Riverside, California, USA.Dr. Prue Talbot is Professor of Cell Biology & Neuroscience and Director of the Stem Cell Center and Core atthe University of California Riverside, California, USA.
The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.
CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago. The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you'll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms. Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it. Coverage includes Preparing your computer to run CUDA programs Understanding CUDA's parallelism model and C extensions Transferring data between CPU and GPU Managing timing, profiling, error handling, and debugging Creating 2D grids Interoperating with OpenGL to provide real-time user interactivity Performing basic simulations with differential equations Using stencils to manage related computations across threads Exploiting CUDA's shared memory capability to enhance performance Interacting with 3D data: slicing, volume rendering, and ray casting Using CUDA libraries Finding more CUDA resources and code Realistic example applications include Visualizing functions in 2D and 3D Solving differential equations while changing initial or boundary conditions Viewing/processing images or image stacks Computing inner products and centroids Solving systems of linear algebraic equations Monte-Carlo computations
The computer graphics (CG) industry is an attractive field for undergraduate students, but employers often find that graduates of CG art programmes are not proficient. The result is that many positions are left vacant, despite large numbers of job applicants. This book investigates how student CG artists develop proficiency. The subject is important to the rapidly growing number of educators in this sector, employers of graduates, and students who intend to develop proficiency for the purpose of obtaining employment. Educators will see why teaching software-oriented knowledge to students does not lead to proficiency, but that the development of problem-solving and visualisation skills do. This book follows a narrow focus, as students develop proficiency in a cognitively challenging task known as 'NURBS modelling'. This task was chosen due to an observed relationship between students who succeeded in the task, and students who successfully obtained employment after graduation. In the study this is based on, readers will be shown that knowledge-based explanations for the development of proficiency do not adequately account for proficiency or expertise in this field, where visualisation has been observed to develop suddenly rather than over an extended period of time. This is an unusual but not unique observation. Other studies have shown rapid development of proficiency and expertise in certain professions, such as among telegraph operators, composers and chess players. Based on these observations, the book argues that threshold concepts play a key role in the development of expertise among CG artists.
This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes. Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives. The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes a novel anomaly localisation procedure. In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then developed where the number of topics is determined from data. Batch and online inference algorithms are developed. The latter part of the thesis considers behaviour analysis and anomaly detection within the change-point detection methodology. A novel general framework for change-point detection is introduced. Gaussian process time series data is considered. Statistical hypothesis tests are proposed for both offline and online data processing and multiple change point detection are proposed and theoretical properties of the tests are derived. The thesis is accompanied by open-source toolboxes that can be used by researchers and engineers.
This book provides detailed practical guidelines on how to develop an efficient pathological brain detection system, reflecting the latest advances in the computer-aided diagnosis of structural magnetic resonance brain images. Matlab codes are provided for most of the functions described. In addition, the book equips readers to easily develop the pathological brain detection system further on their own and apply the technologies to other research fields, such as Alzheimer's detection, multiple sclerosis detection, etc.
This book presents cutting-edge research on various ways to bridge the semantic gap in image and video analysis. The respective chapters address different stages of image processing, revealing that the first step is a future extraction, the second is a segmentation process, the third is object recognition, and the fourth and last involve the semantic interpretation of the image. The semantic gap is a challenging area of research, and describes the difference between low-level features extracted from the image and the high-level semantic meanings that people can derive from the image. The result greatly depends on lower level vision techniques, such as feature selection, segmentation, object recognition, and so on. The use of deep models has freed humans from manually selecting and extracting the set of features. Deep learning does this automatically, developing more abstract features at the successive levels. The book offers a valuable resource for researchers, practitioners, students and professors in Computer Engineering, Computer Science and related fields whose work involves images, video analysis, image interpretation and so on.
This unique text/reference presents a fresh look at nonlinear processing through nonlinear eigenvalue analysis, highlighting how one-homogeneous convex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applications of the new multi-scale representation based on non-linear eigenproblems. The book then concludes with a discussion of new numerical techniques for finding nonlinear eigenfunctions, and promising research directions beyond the convex case. Topics and features: introduces the classical Fourier transform and its associated operator and energy, and asks how these concepts can be generalized in the nonlinear case; reviews the basic mathematical notion, briefly outlining the use of variational and flow-based methods to solve image-processing and computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework for one-homogeneous functionals, and applies this framework for denoising, texture processing and image fusion; proposes novel ways to solve the nonlinear eigenvalue problem using special flows that converge to eigenfunctions; examines graph-based and nonlocal methods, for which a TV eigenvalue analysis gives rise to strong segmentation, clustering and classification algorithms; presents an approach to generalizing the nonlinear spectral concept beyond the convex case, based on pixel decay analysis; discusses relations to other branches of image processing, such as wavelets and dictionary based methods. This original work offers fascinating new insights into established signal processing techniques, integrating deep mathematical concepts from a range of different fields, which will be of great interest to all researchers involved with image processing and computer vision applications, as well as computations for more general scientific problems.
John Vince explains a comprehensive range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, special effects, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded sixth edition. The first five chapters cover a general introduction, number sets, algebra, trigonometry and coordinate systems, which are employed in the following chapters on determinants, vectors, matrix algebra, complex numbers, geometric transforms, quaternion algebra, quaternions in space, interpolation, curves and patches, analytical geometry and barycentric coordinates. Following this, the reader is introduced to the relatively new subject of geometric algebra, followed by two chapters that introduce differential and integral calculus. Finally, there is a chapter on worked examples. Mathematics for Computer Graphics covers all of the key areas of the subject, including: * Number sets * Algebra * Trigonometry * Complex numbers * Coordinate systems * Determinants * Vectors * Quaternions * Matrix algebra * Geometric transforms * Interpolation * Curves and surfaces * Analytic geometry * Barycentric coordinates * Geometric algebra * Differential calculus * Integral calculus This sixth edition contains approximately 150 worked examples and over 330 colour illustrations, which are central to the author's descriptive writing style. Mathematics for Computer Graphics provides a sound understanding of the mathematics required for computer graphics software and setting the scene for further reading of more advanced books and technical research papers
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Quebec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
A key element of any modern video codec is the efficient exploitation of temporal redundancy via motion-compensated prediction. In this book, a novel paradigm of representing and employing motion information in a video compression system is described that has several advantages over existing approaches. Traditionally, motion is estimated, modelled, and coded as a vector field at the target frame it predicts. While this "prediction-centric" approach is convenient, the fact that the motion is "attached" to a specific target frame implies that it cannot easily be re-purposed to predict or synthesize other frames, which severely hampers temporal scalability. In light of this, the present book explores the possibility of anchoring motion at reference frames instead. Key to the success of the proposed "reference-based" anchoring schemes is high quality motion inference, which is enabled by the use of a more "physical" motion representation than the traditionally employed "block" motion fields. The resulting compression system can support computationally efficient, high-quality temporal motion inference, which requires half as many coded motion fields as conventional codecs. Furthermore, "features" beyond compressibility - including high scalability, accessibility, and "intrinsic" framerate upsampling - can be seamlessly supported. These features are becoming ever more relevant as the way video is consumed continues shifting from the traditional broadcast scenario to interactive browsing of video content over heterogeneous networks. This book is of interest to researchers and professionals working in multimedia signal processing, in particular those who are interested in next-generation video compression. Two comprehensive background chapters on scalable video compression and temporal frame interpolation make the book accessible for students and newcomers to the field.
This book lies at the interface of machine learning - a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail - and photonics - the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.
This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques. Further, a set of structured sparse coding models is developed to address the issues of dynamic tactile sensing. The book then proves that the proposed framework is effective in solving the problems of multi-finger tactile object recognition, multi-label tactile adjective recognition and multi-category material analysis, which are all challenging practical problems in the fields of robotics and automation. The proposed sparse coding model can be used to tackle the challenging visual-tactile fusion recognition problem, and the book develops a series of efficient optimization algorithms to implement the model. It is suitable as a reference book for graduate students with a basic knowledge of machine learning as well as professional researchers interested in robotic tactile perception and understanding, and machine learning.
The two-volume set LNAI 11288 and 11289 constitutes the proceedings of the 17th Mexican International Conference on Artificial Intelligence, MICAI 2018, held in Guadalajara, Mexico, in October 2018. The total of 62 papers presented in these two volumes was carefully reviewed and selected from 149 submissions. The contributions are organized in topical as follows: Part I: evolutionary and nature-inspired intelligence; machine learning; fuzzy logic and uncertainty management. Part II: knowledge representation, reasoning, and optimization; natural language processing; and robotics and computer vision.
This book constitutes the proceedings of the 7th International Workshop on Computational Topology in Image Context, CTIC 2019, held in Malaga, Spain, in January 2019. The 14 papers presented in this volume were carefully reviewed and selected from 21 submissions. Papers deal with theoretical issues but most of them put the attention on the applicability of concepts and algorithms. These were designed to deal with objects and images, but also with the speech signal. The final application must be for instance in the medical domain or in the robotics one.
This book constitutes the refereed proceedings of the 14th International Conference on Information Systems Security, ICISS 2018, held in Bangalore, India, in December 2018.The 23 revised full papers presented in this book together with 1 invited paper and 3 keynote abstracts were carefully reviewed and selected from 51 submissions. The papers are organized in the following topical sections: security for ubiquitous computing; modelling and anaylsis of attacks; smartphone security; cryptography and theory; enterprise and cloud security; machine learning and security; privacy; and client security and authentication.
The six volumes LNCS 11619-11624 constitute the refereed proceedings of the 19th International Conference on Computational Science and Its Applications, ICCSA 2019, held in Saint Petersburg, Russia, in July 2019. The 64 full papers, 10 short papers and 259 workshop papers presented were carefully reviewed and selected form numerous submissions. The 64 full papers are organized in the following five general tracks: computational methods, algorithms and scientific applications; high performance computing and networks; geometric modeling, graphics and visualization; advanced and emerging applications; and information systems and technologies. The 259 workshop papers were presented at 33 workshops in various areas of computational sciences, ranging from computational science technologies to specific areas of computational sciences, such as software engineering, security, artificial intelligence and blockchain technologies.
This book gives a concise and comprehensive overview of non-cooperative target tracking, fusion and control. Focusing on algorithms rather than theories for non-cooperative targets including air and space-borne targets, this work explores a number of advanced techniques, including Gaussian mixture cardinalized probability hypothesis density (CPHD) filter, optimization on manifold, construction of filter banks and tight frames, structured sparse representation, and others. Containing a variety of illustrative and computational examples, Non-cooperative Target Tracking, Fusion and Control will be useful for students as well as engineers with an interest in information fusion, aerospace applications, radar data processing and remote sensing.
This book constitutes the thoroughly refereed post-conference proceedings of the 12th International Workshop on Graphics Recognition, GREC 2017, held in Kyoto, Japan, in November 2017. The 10 revised full papers presented were carefully reviewed and selected from 14 initial submissions. They contain both classical and emerging topics of graphics rcognition, namely analysis and detection of diagrams, search and classification, optical music recognition, interpretation of engineering drawings and maps.
This book constitutes the proceedings of the Workshop on Shape in Medical Imaging, ShapeMI 2018, held in conjunction with the 21st International Conference on Medical Image Computing, MICCAI 2018, in Granada, Spain, in September 2018. The 26 full papers and 2 short papers presented were carefully reviewed and selected for inclusion in this volume. The papers discuss novel approaches and applications in shape and geometry processing and their use in research and clinical studies and explore novel, cutting-edge theoretical methods and their usefulness for medical applications, e.g., from the fields of geometric learning or spectral shape analysis.
The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The first volume, LNCS 11301, is organized in topical sections on deep neural networks, convolutional neural networks, recurrent neural networks, and spiking neural networks.
The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 4th volume, LNCS 11304, is organized in topical sections on feature selection, clustering, classification, and detection.
The two-volume set LNAI 11288 and 11289 constitutes the proceedings of the 17th Mexican International Conference on Artificial Intelligence, MICAI 2018, held in Guadalajara, Mexico, in October 2018. The total of 62 papers presented in these two volumes was carefully reviewed and selected from 149 submissions. The contributions are organized in topical as follows: Part I: evolutionary and nature-inspired intelligence; machine learning; fuzzy logic and uncertainty management. Part II: knowledge representation, reasoning, and optimization; natural language processing; and robotics and computer vision.
This book constitutes the thoroughly refereed proceedings of the 10th International Conference on Intelligent Human Computer Interaction, IHCI 2018, held in Allahabad, India, in December 2018. The 28 regular papers presented were carefully reviewed and selected from 89 submissions. The papers have been organized in the following topical sections: ECG, EEG -based and Other Multimodal Interactions; Natural Language, Speech and Dialogue Processing; Modeling Human Cognitive Processes and Simulation; Image and Vision Based Interactions; and Applications of HCI.
This book gathers outstanding research papers presented at the International Conference on Intelligent Vision and Computing (ICIVC 2021), held online during October 03-04, 2021. ICIVC 2021 is organised by Sur University, Oman. The book presents novel contributions in intelligent vision and computing and serves as reference material for beginners and advanced research. The topics covered are intelligent systems, intelligent data analytics and computing, intelligent vision and applications collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal natural language processing. |
![]() ![]() You may like...
Face Recognition in Adverse Conditions
Maria De Marsico, Michele Nappi, …
Hardcover
R6,464
Discovery Miles 64 640
From Building Information Modelling to…
Cecilia Bolognesi, Daniele Villa
Hardcover
R6,296
Discovery Miles 62 960
Handbook of Multi-Level Climate Actions…
Mark Starik, Gordon P. Rands, …
Hardcover
R5,681
Discovery Miles 56 810
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,658
Discovery Miles 56 580
Numerical Solution of Time-Dependent…
Willem Hundsdorfer, Jan G. Verwer
Hardcover
R5,716
Discovery Miles 57 160
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,171
Discovery Miles 41 710
|