![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Chirality is a fundamental, persistent, but often overlooked
feature of all living organisms on the molecular level as well as
on the macroscopic scale. The high degree of preference for only
one of two possible mirror image forms in Nature, often called
biological homochirality is a puzzling, and not yet fully
understood, phenomenon. This book covers biological homochirality from an
interdisciplinary approach - contributions range from synthetic
chemists, theoretical topologists and physicists, from
palaeontologists and biologists to space scientists and
representatives of the pharmaceutical and materials
industries.
This book deals with the paradoxical role of autophagy in tumor suppression and tumor promotion in cancer cells. Autophagy plays opposing, context-dependent roles in tumors; accordingly, strategies based on inhibiting or stimulating autophagy could offer as potential cancer therapies. The book elucidates the physiological role of autophagy in modulating cancer metastasis, which is the primary cause of cancer-associated mortality. Further, it reviews its role in the differentiation, development, and activation of multiple immune cells, and its potential applications in tumor immunotherapy. In addition, it examines the effect of epigenetic modifications of autophagy-associated genes in regulating tumor growth and therapeutic response and summarizes autophagy's role in the development of resistance to a variety of anti-cancer drugs in cancer cells. In closing, it assesses autophagy as a potential therapeutic target for cancer treatment. Given its scope, the book offers a valuable asset for all oncologists and researchers who wish to understand the potential role of autophagy in tumor biology.
Are you your genes? De-Sequencing: Identity Work with Genes explores this perplexing question, showing how different forms of knowledge must be contextualized to become meaningful. It is generally assumed that the genomic sequence adds up to the identity-forming material life is made of. Yet identity cannot itself adopt the form of a sequence. As the authors in this volume show, the genome must be 'de-sequenced' by human language to render it interpretable and meaningful in a social context. The book unpacks this type of 'sequence-speech' in engaging detail, adopting a personal, social, cultural, and bio-political approach to examine the transformation of human identity and reflexivity in the era of genetic citizenship.
In the last few years, significant advances have been made in understanding how a yeast cell responds to the stress of producing a recombinant protein, and how this information can be used to engineer improved host strains. The molecular biology of the expression vector, through the choice of promoter, tag and codon optimization of the target gene, is also a key determinant of a high-yielding protein production experiment. Recombinant Protein Production in Yeast: Methods and Protocols examines the process of preparation of expression vectors, transformation to generate high-yielding clones, optimization of experimental conditions to maximize yields, scale-up to bioreactor formats and disruption of yeast cells to enable the isolation of the recombinant protein prior to purification. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Recombinant Protein Production in Yeast: Methods and Protocols, seeks to aid scientists in adopting yeast as a protein production host.
Originally published in 1972, Homo Sapiens examines how humans emerged from among the millions of other species and achieved our unique position within the animal kingdom. The book examines what direction future evolution will take and what may be regarded as the 'meaning' of human existence. It stipulates that these are the questions for which no real basis of discussion existed before the 20th century, and at the time of publication, some were still without a definite answer. The book sets out analyse these questions and the continuing debate that has arisen from their study. This is an account of the uniqueness of man in the animal kingdom, how this uniqueness arose during evolution, and what traces of it can be detected in animals other than man. The book describes the mental and physical evolution of man, from his earliest ancestors to the present day. He also gives an account of man's cultural development seeking to establish that there is an underlying principal of cultural evolution, a principle that has been denied by many historians. Later chapters deal with the future and with possible forecasts of mankind's further physical, intellectual and cultural evolution.
Blood has long been viewed as a conduit for therapy, stemming from the ancient days of phlebotomy to remove evil humors to the development of successful blood transfusions to replace missing blood components. The identification and characterization of hematopoietic stem cells by Drs. Till and McCulloch revolutionized the field and soon after, non-hematopoietic stem and progenitor cells were characterized from the blood and bone marrow. Some of these cell types and various blood-derived cell lineages are involved in the repair of various types of tissue damage that span the spectrum of medical disorders. The goal of this book is to provide an up-to-date review of the various types of blood-derived cells with regenerative capacity, identify opportunities for intervention by examining specific clinical applications, and recognize the regulatory environment that will encompass future therapies in regenerative medicine.
There has been no mechanistic explanation for evolutionary change consistent with phylogeny in the 150 years since the publication of 'Origins'. As a result, progress in the field of evolutionary biology has stagnated, relying on descriptive observations and genetic associations rather testable scientific measures. This book illuminates the need for a larger evolutionary-based platform for biology. Like physics and chemistry, biology needs a central theory in order to frame the questions that arise, the way hypotheses are tested, and how to interpret the data in the context of a continuum.The reduction of biology to its self-referential, self-organized properties provides the opportunity to recognize the continuum from the Singularity/Big Bang to Consciousness based on cell-cell communication for homeostasis.
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions.This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the tenth volume of a continuing series.
The study of transcriptomics is key to understanding complex diseases. This new edition will build on the foundation of the first edition while incorporating the progress that has been made in the field of transcriptomics in the past six years, including bioinformatics for data analysis. Written by leading experts, chapters address new subjects such as methodological advances in large-scale sequencing, the sequencing of single-cells, and spatial transcriptomics. The new edition will address how transcriptomics may be used in combination with genetic strategies to identify causative genes in monogenic and complex genetic diseases. Coverage will also explore transcriptomics in challenging groups of diseases, such as cancer, inflammation, bacterial infection, and autoimmune diseases. The updated volume will be useful for geneticists, genome biologists, biomedical researchers, molecular biologists, bioinformaticians, and students, among others.
A Probabilistic Model of the Genotype/Phenotype Relationship provides a new hypothesis on the relationship between genotype and phenotype. The main idea of the book is that this relationship is probabilistic, in other words, the genotype does not fully explain the phenotype. This idea is developed and discussed using the current knowledge on complex genetic diseases, phenotypic plasticity, canalization and others.
The Routledge International Handbook of Social Neuroendocrinology is an authoritative reference work providing a balanced overview of current scholarship spanning the full breadth of the rapidly developing field of social neuroendocrinology. Considering the relationships between hormones, the brain, and social behavior, this collection brings together groundbreaking research in the field for the first time. Featuring 39 chapters written by leading researchers, the handbook offers impressive breadth of coverage. It begins with an overview of the history of social neuroendocrinology before discussing its methodological foundations and challenges. Other topics covered include state-of-the-art research on dominance and aggression; social affiliation; reproduction and pair bonding (e.g., sexual behavior, sexual orientation, romantic relationships); pregnancy and parenting; stress and emotion; cognition and decision making; social development; and mental and physical health. The handbook adopts a lifespan approach to the study of social neuroendocrinology throughout, covering the role that hormones play during gestation, childhood, adolescence, and adulthood. It also illustrates the evolutionary forces that have shaped hormone-behavior associations across species, including research on humans, non-human primates, birds, and rodents. The handbook will serve as an authoritative reference work for researchers, students, and others intrigued by this topic, while also inspiring new lines of research on interactions among hormones, brain, and behavior in social contexts.
Allergic diseases are complex and involve a range of environmental factors interacting with a susceptible genotype. The familial clustering of diseases, such as asthma and hay fever, has been recognised for over two centuries, but identification of the genetic basis to this had to await the molecular biological revolution. Estimates of the contribution that genetic factors make to asthma susceptibility range from 35% to 70%. For the majority of allergic diseases, segregation analysis has not identified a consistent Mendelian pattern of inheritance, which, when combined with multiple phenotypes and environmental interactions, has made identifying candidate genes especially difficult and, at times, controversial. Part of the difficulty has been lack of agreement over phenotype definitions, reduced power of studies to predict linkage and association, and, importantly, lack of true heterogeneity between populations. Despite these difficulties, the last decade has witnessed enormous progress in this field.
Why do twins look alike? How are we similar to our parents? What is the genetic code? Professor Lin He, an Academician of the Chinese Academy of Sciences, shares his childhood stories and knowledge of genetics in this vividly illustrated popular science book.
This extensive new edition presents protocols reflecting the great strides made in the study of induced pluripotent stem (iPS) cells. The collection explores new and improved methods for the generation, expansion, and maintenance of iPS cells from different tissue types, characterization of their differentiation pathways along different lineages, and their potential utility in tissue repair and regeneration. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and up-to-date, Induced Pluripotent Stem (iPS) Cells: Methods and Protocols, Second Edition aims to arm stem cell biologists, both novice and expert, with invaluable protocols that are currently being used in various laboratories around the world.
This volume brings together classical and cutting-edge protocols on the spatio-temporal study of the cellular subsets constituting the bone and the marrow in both mouse and human. Chapters details methods on bone marrow (BM) ecosystem, to label, sort, analyse, and culture specific cell subsets as well as techniques allowing the evaluation of the function of some of the cellular elements of the BM. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bone Marrow Environment: Methods and Protocols aims to help new investigators to pursue the characterization of the BM microenvironment in the coming years.
This authoritative reference presents the modern concepts of mesenchymal stem cells (MSCs) and biomaterials as they pertain to the dental field. The book is organized around three main topics: MSCs biology, advanced biomaterials, and clinical applications. The chapters present basic information on stem cell biology and physiology, modern biomaterials that improve bone tissue regeneration, the biomatrices like platelet-rich fibrin (PRF) used to functionalize the biomaterials surface, the strategic and safe intraoral seats of harvesting, the new sources for MSCs, as well as the future perspectives and new challenges in these exciting fields. The contributors are top scientists with a great deal of experience in regenerative dentistry and biomedical research. They offer an international perspective and are richly cross-disciplinary, representing academia, research, and industry. MSCs and Innovative Biomaterials in Dentistry is indispensable reading for students, researchers, and clinicians who need to stay up-to-date on the cutting-edge developments of tissue engineering and regenerative medicine applied to dental sciences.
This book covers the many ways humans benefit from interactions with other living species. By studying animals of all kinds and sizes, from microbial organisms to elephants and whales, we can learn about their adaptations to extreme conditions on the planet Earth, about the evolutionary development of specialized capabilities, and about their ways to defend themselves against predators and diseases. The authors discuss the strengths and weaknesses of Homo sapiens, and how the study of animals can make us stronger and healthier. To deepen our knowledge of genetics, molecular and cell biology, physiology and medicine, we need to study model organisms. To cure human disease, we can learn from animals how they have evolved ways to protect themselves. To improve human performance, we can study the animal kingdom's top performers and learn from their successes. Considering these important pointers, the authors review genetic engineering techniques that can translate our existing and future animal connections into benefits for human health and performance. Finally, they discuss the challenges associated with our animal connection: the history of pandemics caused by bacterial and viral pathogens demonstrates that there is a risk for transmission of diseases that can disrupt human societies. The recent COVID-19 outbreak is covered in detail as an example.
Phylogenomics: A Primer, Second Edition is for advanced undergraduate and graduate biology students studying molecular biology, comparative biology, evolution, genomics, and biodiversity. This book explains the essential concepts underlying the storage and manipulation of genomics level data, construction of phylogenetic trees, population genetics, natural selection, the tree of life, DNA barcoding, and metagenomics. The inclusion of problem-solving exercises in each chapter provides students with a solid grasp of the important molecular and evolutionary questions facing modern biologists as well as the tools needed to answer them.
* Takes a unique perspective by examining political ideology and behaviour via evolutionary psychology and genetics to explain conservative and liberal differences * Fascinating reading for students and academics in psychology, the social sciences, and humanities, as well as general readers interested in political behavior * Explores the potential future of political behavior and participation in relation to possible consequences of evolution and genetics
This book highlights modern strategies and methods to improve oilseed crops in the era of climate change, presenting the latest advances in plant molecular breeding and genomics-driven breeding. Spectacular achievements in the fields of molecular breeding, transgenics and genomics in the last three decades have facilitated revolutionary changes in oilseed- crop-improvement strategies and techniques. Since the genome sequencing of rice, as the first crop plant, in 2002, the genomes of about one dozen oilseed crops have been sequenced and more are to follow. This has made it possible to decipher the exact nucleotide sequence and chromosomal positions of agroeconomic genes. Most importantly, comparative genomics and genotyping-by-sequencing have opened up new vistas for exploring available biodiversity, particularly of wild crop relatives, for identifying useful donor genes.
First published in 1996, liposomes have become an important model in fundamental biomembrane research, including biophysical, biochemical, and cell biological studies of membranes and cell function. They are thoroughly studied in several applications, such as drug delivery systems in medical applications and as controlled release systems, microencapsulating media, signal carriers, support matrices, and solubilizers in other applications. While medical applications have been extensively reviewed in recent literature, there is a need for easily accessible information on applications for liposomes beyond pharmacology and medicine. The Handbook of Nonmedical Applications of Liposomes fills this void.This unique new handbook series presents recent developments in the use of liposomes in many scientific disciplines, from studies on the origin of life, protein function, and vesicle shapes, to applications in cosmetics, diagnostics, ecology, bioreclamation, and the food industry. In these volumes many of the top experts contribute extensive reviews of their work.
Almost daily, new technologies are being presented that move the field of human pluripotent stem cell research towards a future that may yield highly-effective, personalized medical treatments. Three enabling technologies at hand for human PSCs are 1) directed reprogramming of somatic cells, which eliminate many of the ethical issues associated with the derivation and use of human PSCs, increase genetic diversity of the available human PSC lines, and give rise to better" in vitro" human disease models; 2) the discovery that a Rho-associated protein Kinase (ROCK) inhibitor allows for efficient single cell passaging and cryopreservation, increasing the efficiency and reliability of hPSC culture; and 3) defined, animal-component-free media, which lay the groundwork for simplified scale-up for therapeutic applications, differentiation protocols, and toxicology screens. The aforementioned technologies can be found in "Human Pluripotent Stem Cells: Methods and Protocols," a compilation of 33 detailed protocols in six categories of PSC research that cover laboratory essentials and the derivation of new PSC lines, including induced PSC lines, as well as their growth, maintenance, characterization, genetic manipulation, and differentiation. Written in the successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, "Human Pluripotent Stem Cells: Methods and Protocols" serves as an ideal guide to scientists conducting their own pluripotent cell research programs and makes great strides towards furthering human knowledge and, ultimately, improving the human condition.
This volume looks at in vitro disease models representing the respiratory, hepatobiliary, osteochondral, nervous, dermal, ocular, immune system, and pathological biological processes like tumorigenesis for stem cell research. The chapters in this book cover a range of diseases and application of various stem cells such as adult stem cells and iPS. Chapters also discuss new methods to characterize and manipulate stem cells with the aim to better understand and improve their biological performance. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, In Vitro Models for Stem Cell Therapy: Methods and Protocols is a valuable resource for researchers and scientists interested in learning more about this exciting field
For millennia humanity has simultaneously deplored and waged war. With each conflict the stakes have risen, and we now face global annihilation for the sake of a practice all the world claims to condemn. Is there some seemingly irresistible force that impels us toward our own destruction? To explain this central paradox of human behaviour, Genetic Seeds of Warfare, originally published in 1989, advances a startling new theory. It traces the origins of warfare back to early groups of Homo sapiens in competition for scarce resources, showing that warfare evolved as these groups evolved: kin-group against kin-group; tribe against tribe; nation against nation. Rather than being tied to a specific gene, warfare emerged as one of many behavioural strategies for maximising genetic survival. As social groups became more complex, motivations for warfare developed from simple protection of blood relations to political appeals to shared ethnicity, religion, and national identity. But the ultimate cause of warfare is rooted in the most basic of human drives: the need to ensure that one's genes will survive and reproduce. The authors challenge many assumptions about human behaviour in general, and warfare in particular. They convincingly present the case for an evolutionary understanding of the propensity for warfare, supporting their argument with data from a vast array of social and natural science research. In doing so, they reveal why previous attempts at ending war have failed, and make proactive suggestions toward the development of a new agenda for world peace.
Triticale crop species has received substantial research support since the mid-20th century making it a commercial success in many countries, in diverse value propositions. However, no recent book captures the new knowledge and progresses made in more than 2 decades. The purpose of this work is to review and collate the new knowledge of triticale plant biology and agronomy, while considering the contribution of biotechnology enablers such as molecular markers, doubled haploid technology and genetic engineering in breeding for traits important for crop production, feed, food and industrial end-uses. |
You may like...
Intelligent Analysis of Multimedia…
Siddhartha Bhattacharyya, Hrishikesh Bhaumik, …
Hardcover
R5,617
Discovery Miles 56 170
Macromolecular Complexes in Chemistry…
Paul Dubin, J. Bock, …
Hardcover
R2,705
Discovery Miles 27 050
Astronomy and Big Data - A Data…
Kieran Jay Edwards, Mohamed Medhat Gaber
Hardcover
R2,653
Discovery Miles 26 530
Don't Upset ooMalume - A Guide To…
Hombakazi Mercy Nqandeka
Paperback
BPM - Driving Innovation in a Digital…
Jan Vom Brocke, Theresa Schmiedel
Hardcover
R1,972
Discovery Miles 19 720
|