![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features: A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. Although intended as an introductory text, this book provides in depth coverage of this topic relevant to both students and professionals by taking the reader from basic theory through to practical and instrumental approaches.
This book delineates practical, tested, general methods for
ultraviolet, visible, and infrared spectrometry in clear language
for novice users, and serves as a reference resource for advanced
spectroscopists. Applied Spectroscopy includes important
information and equations which will be referred to regularly. The
book emphasizes reflectance and color measurements due to their
common usage in todays spectroscopic laboratories, and contains
methods for selectinga measurement technique as well as solar and
color measurements. Written by experts in the field, this text
covers spectrometry of new materials, ceramics, and textiles, and
provides an appendix of practical reference data for spectrometry.
This new volume of "Methods in Enzymology" continues the legacy of
this premier serial by containing quality chapters authored by
leaders in the field. This volume coversFluorescence Fluctuation
Spectroscopy
This new volume of "Methods in Enzymology" continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Forster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Forster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells"
NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields, by Stefan Gloggler, Bernhard Blumich, Stephan Appelt Dynamic Nuclear Hyperpolarization in Liquids, by Ulrich L. Gunther NMR with Multiple Receivers, by Eriks Kupce TROSY NMR Spectroscopy of Large Soluble Proteins, by Yingqi Xu, Stephen Matthews Solid-State NMR Spectroscopy of Proteins, by Henrik Muller, Manuel Etzkorn, Henrike Heise Paramagnetic Solid-State Magic-Angle Spinning NMR Spectroscopy, by Guido Pintacuda, Gwendal Kervern"
This thesis focuses on the study of the optical response of new atomically thin two-dimensional crystals, principally the family of transition metal dichalcogenides like MoS2. One central theme of the thesis is the precise treatment of the linear and second-order nonlinear optical susceptibilities of atomically thin transition metal dichalcogenides. In addition to their significant scientific interest as fundamental material responses, these studies provide essential knowledge and convenient characterization tools for the application of these 2D materials in opto-electronic devices. Another important theme of the thesis is the valley physics of atomically thin transition metal dichalcogenides. It is shown that the degeneracy in the valley degree of freedom can be lifted and a valley polarization can be created using a magnetic field, which breaks time reversal symmetry in these materials. These findings enhance our basic understanding of the valley electronic states and open up new opportunities for valleytronic applications using two-dimensional materials.
Since the publishing of the first edition, the methodologies and instrumentation involved in the field of mass spectrometry-based proteomics has improved considerably. Fully revised and expanded, Mass Spectrometry Data Analysis in Proteomics, Second Edition presents expert chapters on specific MS-based methods or data analysis strategies in proteomics. The volume covers data analysis topics relevant for quantitative proteomics, post translational modification, HX-MS, glycomics, and data exchange standards, among other topics. Written in the highly successful Methods in Molecular Biology series format, chapters include brief introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Updated and authoritative, Mass Spectrometry Data Analysis in Proteomics, Second Edition serves as a detailed guide for all researchers seeking to further our knowledge in the field of proteomics.
This book describes the design, development, characterisation and application of two novel fluorescence imaging instruments based on spectrally resolved detector arrays (SRDAs). The simplest SRDA is the standard colour camera, which integrates a Bayer filter array of red, green and blue colour filters to replicate the colour sensing capability of the human eye. The SRDAs used in this book contain many more colours, ranging from 16 to over 100 colour channels. Using these compact, robust and low-cost detectors for biomedical applications opens new avenues of exploration that were not possible before, in particular, the use of spectral imaging in endoscopy. The work presented shows for the first time that not only can this new type of camera be used for fluorescence imaging, but also that it is able to resolve signals from up to 7 different dyes - a level of multiplexing not previously achieved in tissue with such compact and robust equipment. Furthermore, it reports the application of a bimodal endoscope performing both reflectance and fluorescence imaging using these cameras in an ex vivo pig oesophagus model.
Photochromism is the reversible phototransformation of a chemical species between two forms having different absorption spectra. During the phototransformation not only the absorption spectra but also various physicochemical properties change, such as the refractive index, dielectric constant, oxidation/reduction potential, and geometrical structure. The property changes can be applied to photonic equipment such as erasable memory media, photo-optical switch components, and display devices. This book compiles the accomplishments of the research project titled "New Frontiers in Photochromism" supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The project focused not only on the above-mentioned classical subjects in photochromism, such as color changes, optical memory, and optical switches, but also on fundamental physicochemical studies and unprecedented application fields that have not yet been explored in photochromism. The latter topics include light-driven mechanical motion, photocontrol of surface wettability, metal deposition on solid materials, photocontrol of chiral properties, ultrafast decoloration dyes, and femtosecond laser experiments, among others.
This thesis approaches impact resistance in dense suspensions from a new perspective. The most well-known example of dense suspensions, a mixture of cornstarch and water, provides enough impact resistance to allow a person to run across its surface. In the past, this phenomenon had been linked to "shear thickening" under a steady shear state attributed to hydrodynamic interactions or granular dilation. However, neither explanation accounted for the stress scales required for a person to run on the surface. Through this research, it was discovered that the impact resistance is due to local compression of the particle matrix. This compression forces the suspension across the jamming transition and precipitates a rapidly growing solid mass. This growing solid, as a result, absorbs the impact energy. This is the first observation of such jamming front, linking nonlinear suspension dynamics in a new way to the jamming phase transition known from dry granular materials.
This book focuses on charged-particle optics and microscopy, as well as their applications in the materials sciences. Presenting a range of cutting-edge theoretical and methodological advances in electron microscopy and microanalysis, and examining their crucial roles in modern materials research, it offers a unique resource for all researchers who work in ultramicroscopy and/or materials research. The book addresses the growing opportunities in this field and introduces readers to the state of the art in charged-particle microscopy techniques. It showcases recent advances in scanning electron microscopy, transmission electron microscopy and helium ion microscopy, including advanced spectroscopy, spherical-corrected microscopy, focused-ion imaging and in-situ microscopy. Covering these and other essential topics, the book is intended to facilitate the development of microscopy techniques, inspire young researchers, and make a valuable contribution to the field.
This book examines Au (I, III) complexes that selectively attack and inhibit zinc finger proteins (ZnFs) for potential therapeutic use. The author explores gold(I)-phosphine, gold(III) complexes with N^N and C^N donors as inhibitors of the HIV-1 nucleocapsid protein (NCp7), in comparison to the human transcription factor Sp1. To determine the coordination sphere of the gold adducts formed by interaction with ZnFs, two innovative approaches are used, based on Travelling-Wave Ion Mobility coupled with Mass Spectrometry (TWIM-MS), and X-ray Absorption Spectroscopy. Both approaches are proven to yield valuable structural information regarding the coordination sphere of gold in the adducts. In addition, the organometallic compound [Au (bnpy)Cl2] is evaluated. The system is shown to be capable of inhibiting ZnFs by means of C-S coupling.
This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS) a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.
High-temperature and high-pressure treatment of diamond is becoming an important technology to elaborate diamonds. This is the first book providing a comprehensive review of the properties of HPHT-treated diamonds, based on the analysis of published data and the work of the authors. The book gives a detailed analysis of the physics of transformation of internal structures of diamonds subjected to HPHT treatment and discusses how these transformations can be detected using methods of optical microscopy and spectroscopy. It also gives practical recommendations for the recognition of HPHT-treated diamonds. The book is written in a language and terms which can be understood by a broad audience of physicists, mineralogists and gemologists.
Inductively Coupled Plasma-Mass Spectrometry presents a concise A-Z
description of inductively coupled plasma-mass spectrometry,
written in layman's terms, for use in the solution of trace element
analytical chemistry problems. Detailed discussion of sample
introduction and data interpretation is provided.
The timely volume describes recent discoveries and method developments that have revolutionized Structural Biology with the advent of X-ray Free Electron Lasers. It provides, for the first time, a comprehensive examination of this cutting-edge technology. It discusses of-the-moment topics such as growth and detection of nanocrystals, Sample Delivery Techniques for serial femtosecond crystallography, data collection methods at XFELs, and more. This book aims to provide the readers with an overview of the new methods that have been recently developed as well as a prospective on new methods under development. It highlights the most important and novel Structural Discoveries made recently with XFELS, contextualized with a big-picture discussion of future developments.
This book presents studies of complex nanostructures with unique optical responses from both theoretical and experimental perspectives. The theory approaches the optical response of a complex structure from both quantum-mechanical and semiclassical frameworks, and is used to understand experimental results at a fundamental level as well as to form a quantitative model to allow the design of custom nanostructures. The experiments utilize scanning transmission electron microscopy and its associated analytical spectroscopies to observe nanoscale optical effects, such as surface plasmon resonances, with nanometer-scale spatial resolution. Furthermore, there is a focus in the dissertation on the combination of distinct techniques to study the difficult-to-access aspects of the nanoscale response of complex nanostructures: the combination of complementary spectroscopies, the combination of electron microscopy and photonics, and the combination of experiment and theory. Overall, the work demonstrates the importance of observing nanoscale optical phenomena in complex structures, and observing them directly at the nanoscale.
This book offers a comprehensive introduction to confocal microscopy - with a particular focus on spectral confocal microscopy. Beginning with an introduction to optical lenses, it provides a guide to compound microscopes and explains related topics like microscopic resolution. It then presents an outline of fluorescence and its corresponding implications for microscopy. The following excursus on the confocal beam paths includes implementation of acousto-optical devices and modern sensor techniques. Complex relationships are explained in a comprehensible manner, supported by many graphical figures. Discussing the principles of magnifying optics and the technical fundamentals and modes of operation of modern laser scanning microscopes, it is a valuable resource for student and lab technicians as well as faculty members.
This book is intended to give technological background and practical examples, but also to give general insight into the on-going technology development in the area of biodetection. The content is therefore suitable for an array of stakeholders (decision makers, purchasing officers, etc.) and end-users of biodetection equipment within the areas of health, environment, safety and security, and military preparation. The book is divided into three sections. The first section discusses the fundamental physical and biological properties of bioaerosol's. The second section goes into more detail and discusses in-depth the most commonly used detection principles. The third section of the book is devoted to technologies that have been used in standoff applications. The last section of the book gives an overview of trends in bioaerosol detection. The reader of this book will gain knowledge about the different biodetection technologies and thus better judge their capabilities in relation to desired applications.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 260 volumes have been
published (all of them still in print) and much of the material is
relevant even today--truly an essential publication for researchers
in all fields of life sciences.
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
The science and technology related to semiconductors have received significant attention for applications in various fields including microelectronics, nanophotonics, and biotechnologies. Understanding of semiconductors has advanced to such a level that we are now able to design novel system complexes before we go for the proof-of-principle experimental demonstration. This book explains the experimental setups for optical spectral analysis of semiconductors and describes the experimental methods and the basic quantum mechanical principles underlying the fast-developing nanotechnology for semiconductors. Further, it uses numerous case studies with detailed theoretical discussions and calculations to demonstrate the data analysis. Covering structures ranging from bulk to the nanoscale, it examines applications in the semiconductor industry and biomedicine. Starting from the most basic physics of geometric optics, wave optics, quantum mechanics, solid-state physics, it provides a self-contained resource on the subject for university undergraduates. The book can be further used as a toolbox for researching and developing semiconductor nanotechnology based on spectroscopy.
Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications provides a unique source of information in an important area of chemistry. Since Volume 40 the nature and ethos of this series have been altered to reflect a change of emphasis towards 'Techniques, Materials and Applications'. Researchers will now find up-to-date critical reviews which provide in-depth analyses of the leading papers in the field, with authors commenting of the quality and value of the work in a wider context. Focus areas will include structure-function relationships, photochemistry and spectroscopy of inorganic complexes, and catalysis; materials such as ceramics, cements, pigments, glasses and corrosion products; techniques such as advanced laser spectroscopy and theoretical methods.
|
![]() ![]() You may like...
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,372
Discovery Miles 33 720
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,168
Discovery Miles 41 680
Reactive Species Detection in Biology…
Frederick A Villamena
Hardcover
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R11,116
Discovery Miles 111 160
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,496
Discovery Miles 54 960
|