![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This volume is a collection of lectures presented during the 2009 International School on High-pressure Crystal- graphy, which took place at the Ettore Majorana Center for Scientific Culture, between June 4 and 14, 2009, in the very picturesque Sicilian town of Erice. st The 2009 school was the 41 course of the "International School of Cryst- lography" organized at the Majorana Center and was directed by Elena Figure 1. Audience, including local Boldyreva (Novosibirsk University) organizers (orange scarfs) and student and Przemyslaw Dera (University of participants during one of the lectures. Chicago). Unmatched support and excellent on-site organization was provided by the expert team consisting of Prof. Paola Spadon (Uniersity of Padova), Prof. Lodovico Riva di San Severino (University of Bologna), Elena Papinutto and Prof. John Irvin (University of California, San Franciso), aided by great team of young local organizers ("orange scarfs"). Major part of funding for the school was provided by a grant from the NATO Science for Peace and Security program, through which the 2009 Erice school was recognized as a NATO Advanced Study Institute (ASI).
As mass spectrometric methods now offer a level of specificity and sensitivity unrealized by spectrophotometric- and immunoassay-based methods, mass spectrometry has entered the clinical laboratory where it is being used for a wide range of applications. In Clinical Applications of Mass Spectrometry: Methods and Protocols, expert researchers provide detailed step-by-step procedures for the analysis of number of analytes of clinical importance. This versatile and expansive volume covers mass spectrometry methods for analytes including a variety of drugs, hormones, and metabolic compounds spanning the disciplines of toxicology, therapeutic drug monitoring, endocrinology, and pediatric metabolism. Written in the highly successful Methods in Molecular BiologyT series format, chapters include brief introductions to the analytes, lists of the necessary materials and reagents, readily reproducible analytical protocols, and detailed notes on troubleshooting and avoiding known pitfalls. Comprehensive and dependable, Clinical Applications of Mass Spectrometry: Methods and Protocols offers its readers a wide array of valuable methods for experienced mass spectrometric labs that are looking to introduce new analyses as well as for those laboratories currently considering the addition of this resourceful and vital technology. Written for: Biochemists, laboratory scientists, pharmacologists, toxicologists, and endocrinologists
Reflecting the expanding field's need for reliable protocols, Fluorescence Spectroscopy and Microscopy: Methods and Protocols offers techniques from a worldwide team of experts on this versatile and vital subject. The topics covered fall into four broad categories: steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fluorescent probe development, and the various sub-categories of fluorescence microscopy, such as fluorescence recovery after photobleaching (FRAP), live cell FRET imaging (FRETim), fluorescence lifetime imaging (FLIM), fluorescence fluctuation spectroscopy (FFS), and single-molecule fluorescence spectroscopy (smFS). Written as a part of the popular Methods in Molecular Biology series, chapters include the kind of unambiguous detail and key implementation advice that proves essential for successful results. Comprehensive and practical, Fluorescence Spectroscopy and Microscopy: Methods and Protocols aims to guide both 'novice' and established scientists toward furthering their research with these invaluable techniques.
This book draws on the latest research to discuss the history and development of high-entropy alloys and ceramics in bulk, film, and fiber form. High-entropy materials have recently been developed using the entropy of mixing and entropy of configuration of materials, and have proven to exhibit unique properties superior to those of conventional materials. The field of high-entropy alloys was born in 2004, and has since been developed for both scientific and engineering applications. Although there is extensive literature, this field is rapidly transforming. This book highlights the cutting edge of high-entropy materials, including their fundamentals and applications. Above all, it reflects two major milestones in their development: the equi-atomic ratio single-phase high-entropy alloys; and the non-equi-atomic ratio dual-phase high-entropy alloys.
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book gives a detailed account of the holistic research carried out on the analytical data obtained historically on the products of the Nantgarw and Swansea porcelain manufactories which existed for a few years only during the second decade of the 19th Century. A background to the establishment of the two factories, which are linked through the persons of the enigmatic William Billingsley and his kiln manager, Samuel Walker, involves the sourcing of their raw materials and problems associated with the manufacture and distribution of the finished products. A description of the minerals and additives used in porcelain production is recounted to set the scene for the critical evaluation of the comprehensive analytical data which have been published on Nantgarw and Swansea porcelains. For the first time, the author has adopted a nondestructive technique, Raman spectroscopy, to interrogate perfect samples of Nantgarw and Swansea porcelain, as well as a selection of shards from an archaeological excavation carried out at a waste dump at the Nantgarw China Works site. Following these experiments, several questions relating to the porcelain bodies of Swansea and Nantgarw china can be answered and a protocol established for the preliminary evaluation of items of suspect attribution to confirm or not the correctness of their assignment to these Welsh porcelain factories.
Sean Ashton's doctoral thesis, which he finished at the Technical University in Munich, describes the challenge of constructing a Differential Electrochemical Mass Spectrometer instrument (DEMS). DEMS combines an electrochemical cell with mass spectrometry via a membrane interface, allowing gaseous and volatile electrochemical reaction species to be monitored online. The thesis carefully introduces the fuel cell electrocatalyst development concerns before reviewing the pertinent literature on DEMS. This is followed by the presentation and discussion of the new extended design, including a thorough characterization of the instrument. The capabilities of the new setup are demonstrated in two research studies: The methanol oxidation reaction on Pt and PtRu catalysts, and the electrochemical corrosion of fuel cell catalyst supports. Despite both topics having long since been studied, new insights can be obtained through careful investigations with the new DEMS instrument that are of great, general interest. The thesis and the instrument thus show the way for future investigations in the field.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 260 volumes have been
published (all of them still in print) and much of the material is
relevant even today--truly an essential publication for researchers
in all fields of life sciences.
The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction - triboplasma - was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.
Photobiology integrates a wide variety of scientific disciplines.
As more people become aware of the many ways light interacts with
chemical and biological systems, the need for a concise treatment
of photobiology has become more critical. Kohen "et al." Have
written just such a book, intended both as a textbook and as a
reference.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
"Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC): Methods and ""Protocols "provides a synopsis of a large array of different SILAC methods by presenting a set of protocols that have been established by renowned scientists and their working groups. These include methods and protocols for the labeling of various model organisms as well as advanced strategies relying on SILAC, e.g. for the analysis of protein interactions, the mapping of posttranslational modifications or the characterization of subcellular proteomes. Written in the highly successful "Methods in Molecular Biology "series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, "Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC): ""Methods and Protocols "will serve students and experienced scientists alike as a valuable reference of how to make use of the SILAC technology for their own research.
This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.
This book describes the design, construction, and characterization of a new type of aberration-corrected, neutral-atom lens. Atom beam control plays a crucial role in many different fields, ranging from fundamental physics research and materials science to applied nanotechnology. Despite this, atom-optical elements like lenses and mirrors remain relatively underdeveloped compared to their counterparts in other optics fields. Although aberration correction is addressed quite comprehensively in photon and electron lenses, no credible research efforts have yet produced the same technology for neutral atoms. It reports on progress towards a neutral atom imaging device that will be useful in a range of applications, including nanofabrication and surface microscopy. It presents a novel technique for improving refractive power and correcting chromatic aberration in atom lenses based on a fundamental paradigm shift from continuous, two-dimensional focusing to a pulsed, three-dimensional approach. Simulations of this system suggest that it will pave the way towards the long-sought goal of true atom imaging on the nanoscale. The book further describes the construction of a prototype lens, and shows that all of the technological requirements for the proposed system are easily satisfied. Using metastable neon from a supersonic source, the prototype was characterized for three different focal lengths and a diverse range of apertures. Despite some manufacturing imperfections, lower distortion and higher resolution than has been shown in any previous hexapole lens was observed. Comparison with simulations corroborates the underlying theory and encourages further refinement of the process.
A thorough assessment of the applications of inorganic mass spectrometry Mass spectrometry is a powerful analytical technique used to identify unknown compounds, to quantify known materials, and to elucidate the structural and chemical properties of molecules. Inorganic mass spectrometry focuses on the analysis of metals and elements rather than organic compounds. Applications of Inorganic Mass Spectrometry describes developments in mass spectrometric instrumentation, together with applications in metrology, nuclear science, cosmochemistry, geoscience, environmental science, and planetary science. Divided into two parts, the first part of the book reviews the numerous technological advances that have occurred in mass spectrometry since 1947, a date regarded as the birth of modern mass spectrometry. The second part offers an up-to-date description of the many applications of inorganic mass spectrometry and includes a comprehensive set of references for each application. It is doubtful that any other analytical instrument has had such a significant impact in so many fields of science as mass spectrometry. Applications of Inorganic Mass Spectrometry provides researchers, scientists, and engineers with an essential reference for this vital science.
Many of the ISO observers who assembled for this workshop at Ringberg c- tle met for the third time in the Bavarian Alps. At two previous meetings in 1989 and 1990 surveys were only a minor topic. At that time we were excited by the discoveries of the IRAS survey mission and wanted to follow it up with pointed observations using an observatory telescope equipped with versatile instruments. With the rapid development of detector arrays and stimulated by ISO's Observing Time Allocation Committee, however, surveys eventually became an issue for the upcoming mission. In a review paper on "Infrared S- veys - the Golden Age of Exploration" given at an IAU meeting in 1996, Chas Beichman already mentioned that there are ISO surveys. They were at the bottom of his hit list, while the winners were future space missions (Planck, SIRTF, etc. ) and ground-based surveys in preparation (Sloan, 2MASS, DE- NIS, etc. ). He organized his table according to the relative explorable volume, calculated from the solid angle covered on the sky and the maximum distance derived from the detection sensitivity. Clearly, with this ?gure of merit, ISO, as a pointed observatory, is rated low. Applying the classical de?nition of a survey, i. e. to search in as large a volume as possible for new or rare objects and/or study large numbers of objects of various classes in order to obtain statistical properties, ISO was indeed limited.
Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers), coherent matter waves, Doppler-free Fourier spectroscopy, interference spectroscopy, quantum optics and gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.
Glycosylation is the most abundant post-translational modification of proteins. Estimates vary widely, but a common assessment is that upwards of 50% of eukaryotic proteins are modified by some type of glycan. In Mass Spectrometry of Glycoproteins: Methods and Protocols, expert researchers in the field detail many of the methods that are now commonly used for glycoproteomics. These methods and techniques include robust sample preparation techniques; advanced chromatographic strategies for improving dynamic range; state-of-the-art mass spectrometry instrumentation and associated ionization and fragmentation methods; and informatics tools used for identifying glycoproteins and characterizing the associated glycans. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Mass Spectrometry of Glycoproteins: Methods and Protocol is an essential resource for those who work at the interface of glycobiology and mass spectrometry.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr |
You may like...
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,257
Discovery Miles 32 570
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R10,685
Discovery Miles 106 850
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,260
Discovery Miles 22 600
|