![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry > General
Infrared and Raman Spectroscopy of Biological Materials facilitates a comprehensive and through understanding of the latest developments in vibrational spectroscopy. It contains explains key breakthroughs in the methodologies and techniques for infrared, near-infrared, and Raman spectroscopy. Topics include qualitative and quantitative analysis, biomedical applications, vibrational studies of enzymatic catalysis, and chemometrics.
The last few years have seen an unprecedented drive toward the
application of proteomics to resolving challenging biomedical and
biochemical tasks. Separation techniques combined with modern mass
spectrometry are playing a central role in this drive. This book
discusses the increasingly important role of mass spectrometry in
proteomic research, and emphasizes recent advances in the existing
technology and describes the advantages and pitfalls as well.
This book reviews a variety of methods in computational chemistry and their applications in different fields of current research. Ab initio methods and regression analyses are discussed with special focus on their application to investigate chemical structures as for example dyes or drug compounds. Further topics are the use of computational methods in the modeling of spectroscopic data or to study reaction mechanisms.
Addressing the need for an up-to-date reference on silicon devices and heterostructures, Beyond the Desert 99 reviews the technology used to grow and characterize Goup IV alloy films. It covers the theory, device design, and simulation of heterojunction transistors, emphasizing their relevance in developing the technologies involving strained layers; device design and simulation of conventional silicon bipolar transistors and SiGe HBTs at room and low temperatures; and device design and simulation for MOSFETs, including SiGe and strained-Si channel MOSFETs. The book concludes with simulations and examples of different applications. It provides a unified reference for scientists and engineers investigating the use of SiGe and strained silicon in a new generation of high-speed circuit applications.
This thesis focuses on understanding the growth and formation mechanism of supermassive black holes (SMBHs), an issue it addresses by investigating the dense interstellar medium that is assumed to be a crucial component of the fuel for SMBHs. The thesis also offers unique guidance on using the Atacama Large Millimeter/submillimeter Array (ALMA) in active galactic nuclei (AGN) research. The author presents the three major findings regarding SMBH formation and growth: (1) The development of a new diagnostic method for the energy sources in galaxies based on submillimeter spectroscopy, which allows identification of accreting SMBHs even in obscured environments, (2) the discovery that the circumnuclear dense gas disk (CND), with a typical size of a few tens of parsecs, which plays a crucial role in governing the growth of SMBHs, and (3) the discovery that the mass transfer budget from the CND to the central SMBHs can be quantitatively understood with a theoretical model incorporating the circumnuclear starburst as a driver of mass transfer. The thesis skillfully reviews these three findings, which have greatly improved our understanding of the growth mechanism of SMBHs.
SELDI is distinct from other TOF-MS technologies in that it couples features of chromatography and mass spectrometry, facilitating analyte enrichment and sample cleanup on an array surface. In the growing field of proteomics, SELDI technology has been widely used for biomarker discovery and characterization in diverse applications including diagnostics, drug development, and basic research. SELDI-based biomarker studies can typically be divided into four phases: discovery, validation, purification and identification, and assay development. SELDI-TOF Mass Spectrometry: Methods and Protocols provides an overview of the current applications of SELDI-TOF MS (surface enhanced laser desorption/ionization time-of-flight mass spectrometry), with an emphasis on study and experimental design, data analysis and interpretation, and assay development. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, SELDI-TOF Mass Spectrometry: Methods and Protocols will provide information on optimizing study design, experimental protocols, and data analysis and interpretation to yield robust biomarkers and biomarker assays, using examples from different disease areas.
Application of NMR and Molecular Docking in Structure-Based Drug Discovery, by Jaime L. Stark and Robert Powers NMR as a Unique Tool in Assessment and Complex Determination of Weak Protein-Protein Interactions, by Olga Vinogradova and Jun Qin The Use of Residual Dipolar Coupling in Studying Proteins by NMR, by Kang Chen und Nico Tjandra NMR Studies of Metalloproteins, by Hongyan Li and Hongzhe Sun Recent Developments in 15N NMR Relaxation Studies that Probe Protein Backbone Dynamics, by Rieko Ishima Contemporary Methods in Structure Determination of Membrane Proteins by Solution NMR, by Tabussom Qureshi and Natalie K. Goto Protein Structure Determination by Solid-State NMR, by Xin Zhao Dynamic Nuclear Polarization: New Methodology and Applications, by Kong Hung Sze, Qinglin Wu, Ho Sum Tse and Guang Zhu
The 37th Annual Denver Conference on Applications of X-Ray Analysis was held August 1-5, 1988, at the Sheraton Steamboat Resort and Conference Center, Steamboat Springs, Colorado. As usual, alternating with x-ray diffraction, the emphasis this year was x-ray fluorescence, but as has been the pattern for several occasions over the last few years, the Plenary Session did not deal with that subject, specifically. In an attempt to introduce the audience to one of the new developments in x-ray analysis, the title of the session was "High Brilliance Sources/Applications," and dealt exclusively with synchrotron radiation, a topic which has made a very large impact on the x-ray community over the last decade. As the organizer and co-chairman of the Plenary Session (with Paul Predecki), it is my responsibility to report on that session here. The Conference had the privilege of obtaining the services of some of the preeminent practitioners of research using this remarkable x-ray source; they presented the audience with unusually lucid descriptions of the work which has been accomplished in the development and application of the continuous, high intensity, tunable, polarized and collimated x-rays available from no facility other than these specialized storage rings. The opening lecture (and I use that term intentionally) was an enthusiastic description of "What is Synchrotron Radiation?" by Professor Boris Batterman of Cornell University and the Cornell High Energy Synchrotron Sourc(! (CHESS).
This detailed volume provides a comprehensive overview of state-of-the-art metabolomics methods based on mass spectrometry (MS), and their application in food, nutrition, and biomedical research. The chapters assembled herein cover hot topics related to sample preparation, chromatographic and electrophoretic separation, MS-based analysis, as well as data processing and analysis. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mass Spectrometry for Metabolomics serves as a timely guide for chemists, biochemists, biologists, nutritionists, clinicians, and other experts working in the growing and exciting field of metabolomics.
This book reviews the latest advances in mass spectrometry (MS) techniques applied to food safety and environment quality, and it discusses the recent improvements in sample preparation and MS platforms for screening of emerging contaminants. Expert contributors discuss the current applications from omics to the screening of emerging contaminants and nanomaterials in food and environmental matrices, and particular attention is given to the opportunities that MS offers for guarantying food security and promoting the sustainable use of ecosystems. Divided into 13 chapters, the book covers topics such as the handling and preparation of food and environmental samples for MS, foodomics, environmental omics, ambient ionization techniques in food and environmental chemistry, and chip-based separation devices coupled to MS. Readers will also find a comprehensive overview of several MS techniques applied to food and environmental chemistry, including elemental, isotopic, chiral, ion mobility, chromatographic and imaging MS. This book will appeal not only to students and researchers, but also to professionals working with MS platforms in food safety and environmental quality. The different advances and promising applications described in this work will be of paramount importance for ensuring food safety and environment health for current and future generations.
The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: *Boron-rich solids: science and technology *Synthesis and sintering strategies of boron rich solids *Microcantilever sensors *Screening of the possible boron-based thermoelectric conversion materials; *Ultra-high temperature ZrB2 and HfB2 based composites *Magnetic, transport and high-pressure properties of boron-rich solids *Restrictions of the sensor dimensions for chemical detection *Armor
Martin Stein's thesis describes a novel methodology for natural product discovery. Due to its high degree of reproducibility, robustness and sensitivity, the technique can be utilized to detect even trace amounts of bioactive substances in heterogeneous matrices such as fermentation broths or crude organic extracts. This research is thus relevant for a large number of researchers working in natural product discovery. Applications of this novel NMR-based approach include suitable environmental triggers for the induction of biosynthetic machineries. The author demonstrates the extraordinary value of this approach by the successful isolation of two potent inhibitors of the pharmaceutically relevant proteasome core particle from the insect pathogen photorhabdus luminescens. This thesis has led to a number of publications in high-impact journals.
An accessible guide to all aspects of molecular fluorescence spectroscopy This book introduces the uninitiated reader to the growing body of analytical methods based on molecular fluorescence. Geared to practitioners with no particular training or exposure to the field, it highlights fluorescence spectroscopy’s tremendous appeal in present-day pharmaceutical, biomedical, and environmental analysis. Written by two highly respected experts in the field, Introduction to Fluorescence Spectroscopy covers all aspects of the technology—physical fundamentals, instrumentation, methods, and applications. The information is offered at 0a very practical level and addresses a broad range of chemical, physical, biological, and geological problems. The authors incorporate recent advances in commercially available instrumentation as well as fluorescent derivatizing agents, provide many examples of state-of-the-art applications, and discuss future trends. Concise, accessible, up-to-date, Introduction to Fluorescence Spectroscopy is an indispensable reference and an invaluable primer for those involved in the field of analytical science and other professionals interested in this fast-evolving analytical technique.
The rapid growth of the subject since the first edition ten years ago has made it necessary to rewrite the greater part of the book. Except for the introductory portion and the section on Mott scattering, the book has been completely revised. In Chap. 3, sections on polarization violating reflection symmetry, on resonance scattering, and on inelastic processes have been added. Chapter 4 has been rewritten, taking account of the numerous novel results obtained in exchange scattering. Chapter 5 includes the recent discoveries on photoelectron polarization produced by unpolarized radiation with unpolarized targets and on Auger-electron polarization. In Chap. 6, a further discussion of relativistic polarization phenomena has been added to the book. The immense growth of polarization studies with solids and surfaces required an extension and new presentation of Chap. 7. All but one section of Chap. 8 has been rewritten and a detailed treatment of polarization analysis has been included. Again, a nearly comprehensive treatment has been attempted. Even so, substantial selectivity among the wide range of available material has been essential in order to accomplish a compact presentation. The reference list, selected along the same lines as in the first edition, is meant to lead the reader through the literature giving a guide for finding further references. I want to express my indebtedness to a number of people whose help has been invaluable.
This thesis presents results from a combined atomic-resolution Z-contrast and annular bright-field imaging and electron energy loss spectroscopy in the Scanning Transmission Electron Microscopy, as well as first principles studies of the interfaces between crystalline " "" "Si3N4 and amorphous (i) CeO2-x as well as (ii) SiO2 intergranular film (IGF). These interfaces are of a great fundamental and technological interest because they play an important role in the microstructural evolution and mechanical properties of Si3N4 ceramics used in many high temperature and pressure applications. The main contribution of this work is its detailed description of the bonding characteristics of "light" atoms, in particular oxygen and nitrogen, at these interfaces, which has not been achieved before. The atomic-scale information on the arrangement of both light and heavy atoms is critical for realistic modeling of interface properties, such as interface strength and ion transport, and will facilitate increased control over the performance of ceramic and semiconductor materials for a wide-range of applications."
This is the first ever comprehensive treatment of NEXAFS spectroscopy. It is suitable for novice researchers as an introduction to the field, while experts will welcome the detailed description of state-of-the-art instrumentation and analysis techniques, along with the latest experimental and theoretical results.
This work represents a sound introduction to the fundamental principles of infrared microspectroscopy (IMS). It describes how IMS is used to solve specific microanalytical problems in a variety of disciplines, including forensic analysis, art conservation, and geological, pharmaceutical and electronics research. The book discusses when and how to use special techniques such as line scanning, 3-dimensional imaging and attenuated total reflection and grazing-angle spectroscopy.
Nanospectroscopy addresses the spectroscopy of very small objects down to single molecules or atoms, or high-resolution spectroscopy performed on regions much smaller than the wavelength of light, revealing their local optical, electronic and chemical properties. This work highlights modern examples where optical nanospectroscopy is exploited in photonics, optical sensing, medicine, or state-of-the-art applications in material, chemical and biological sciences. Examples include the use of nanospectroscopy in such varied fields as quantum emitters, dyes and two-dimensional materials, on solar cells, radiation imaging detectors, biosensors and sensors for explosives, in biomolecular and cancer detection, food science, and cultural heritage studies.
This book details groundbreaking experiments for the sensing and imaging of terahertz-frequency electromagnetic radiation (THz) using Rydberg atoms. The major advances described include the development and implementation of a new technique for THz imaging using atomic fluorescence; the demonstration of a THz-driven phase transition in room-temperature atomic vapour; and a novel method for probing the excited-state dynamics of atoms using quantum beats. The work has formed the basis for several articles published in journals including Nature Photonics and the Physical Review, and has sparked industry interest, becoming the subject of ongoing collaborative research and development. This exceptionally well-written book provides a definitive account of terahertz sensing with Rydberg atoms.
This biography gives an insider view of 20th century German science in the making. The discovery by Max von Laue in 1912 of interference effects demonstrated the wave-like nature of X-rays and the atomic lattice structure of crystals. This major advance for research on solids earned him the Nobel Prize two years later, the ultimate acclaim as an exceptional theoretician. As an early supporter of Einstein's relativity theory, he published fundamental papers on light scattering as well as on matter waves and superconductivity. Laue may be counted among the few persons of influence in Germany who - as Einstein put it - managed to "stay morally upright" under Nazism. It is thus surprising that this is the first extensive biography of this famous scientist. Jost Lemmerich could hardly have been better equipped to describe German physics and physicists in the 1920s. His copiously illustrated historical account is based as much on scientific material as on private correspondence, creating a fascinating and convincingly detailed portrait.
Metrology is part of the essential but largely hidden infrastructure of the modern world. This book concentrates on the infrastructure aspects of metrology. It introduces the underlying concepts: International system of units, traceability and uncertainty; and describes the concepts that are implemented to assure the comparability, reliability and quantifiable trust of measurement results. It is shown what benefits the traditional metrological principles have in fields as medicine or in the evaluation of cyber physical systems.
This open access book covers recent advances in experiments using the ultra-cold, very weakly perturbing superfluid environment provided by helium nanodroplets for high resolution spectroscopic, structural and dynamic studies of molecules and synthetic clusters. The recent infra-red, UV-Vis studies of radicals, molecules, clusters, ions and biomolecules, as well as laser dynamical and laser orientational studies, are reviewed. The Coulomb explosion studies of the uniquely quantum structures of small helium clusters, X-ray imaging of large droplets and electron diffraction of embedded molecules are also described. Particular emphasis is given to the synthesis and detection of new species by mass spectrometry and deposition electron microscopy.
This work details an application of collinear resonance ionization spectroscopy for the separation of short-lived isomeric states and their subsequent study with decay spectroscopy.It reports the successful construction ofa novel decay spectroscopy apparatus that can operate at pressures below 1 x 10 DEGREES-9 mbar. The method is demonstrated by separating the nuclear ground and isomeric states of 204Fr and performing alpha-decay spectroscopy. An equivalent mass spectrometer would require 4.6 million times as much resolution to achieve the same result. This work unambiguously confirms the existence of a second isomeric state in 204Fr. The author also demonstrates the effectiveness of this method for laser spectroscopy and identification of hyperfine-structure components with energy tagging. This method was successfully used in 202Fr to identify ground and isomeric states. The measurement of 202Fr reported in this thesis demonstrates a factor of 100 improvement in sensitivity compared to state-of-the-art fluorescence techniques. The work reported in this thesis won the author the IOP Nuclear Physics Group Early Career Pri
Starting from fundamentals and moving through a thorough discussion of equipment, methods, and techniques, the Handbook of Laser-Induced Breakdown Spectroscopy provides a unique reference source that will be of value for many years to come for this important new analysis method. The authors, with a total of over 60 years of experience in the LIBS method, use a combination of tutorial discussions ranging from basic principles up to more advanced descriptions along with extensive figures and photographs to clearly explain topics addressed in the text. In this second edition, chapters on the use of statistical analysis and advances in detection of weapons of mass destruction have been added. Tables of data related to analysis with LIBS have been updated. The Handbook of Laser-Induced Breakdown Spectroscopy, Second Edition: * provides a thorough but understandable discussion of the basic principles of the method based on atomic emission spectroscopy, including recently available data leading to better characterization of the LIBS plasma; * presents a discussion of the many advantages of the method along with limitations, to provide the reader a balanced overview of capabilities of the method; * describes LIBS instrumentation ranging from basic set-ups to more advanced configurations; * presents a comprehensive discussion of the different types of components (laser, spectrometers, detectors) that can be used for LIBS apparatuses along with suggestions for their use, as well as an up-to-date treatment of the newest advances and capabilities of LIBS instruments; * presents the analytical capabilities of the method in terms of detection limits, accuracy, and precision of measurements for a variety of different sample types; * discusses methods of sampling different media such as gases, liquids, and solids; * presents an overview of some real-world applications of the method, with new emphasis on sampling of biologically and physically dangerous materials; * provides an up-to-date list of references to LIBS literature along with the latest detection limits and a unique list of element detection limits using a uniform analysis method; * provides annotated examples of LIBS spectra which can serve as references for the general reader and will be especially useful for those starting out in the field. |
You may like...
Collisional Effects on Molecular Spectra…
Jean-Michel Hartmann, Christian Boulet, …
Paperback
R4,963
Discovery Miles 49 630
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,257
Discovery Miles 32 570
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R10,685
Discovery Miles 106 850
Reference Materials in Measurement and…
Sergey V. Medvedevskikh, Egor P. Sobina, …
Hardcover
R4,702
Discovery Miles 47 020
Photoacoustic and Photothermal…
Surya N. Thakur, Virendra N. Rai, …
Paperback
R4,417
Discovery Miles 44 170
|